Trapping effect on inflation

Yukawa Institute for Theoretical Physics March 3, 2012

I-Chin Wang Tamkang University

Collaborators: Wolung Lee, Chun-Hsien Wu and Kin-Wang Ng

Basic idea

Slow roll

60 e foldings $a(t) = e^{Ht}$

Flat potential

Slow rolling potential

• Steep potential

Trapped inflation, potential is too steep for slow roll

JHEP 0405:030,2004 Kofman et al Phys.Rev.D80:063533,2009 Green et al

 $V(\Phi)$

 Φ

Trapped inflation

• Particle production slow down the velocity while rolling down a steep potential

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) + \frac{1}{2} \sum_{i} (\partial_{\mu} \chi_{i} \partial^{\mu} \chi_{i} - g^{2} (\phi - \phi_{i})^{2} \chi_{i}^{2})$$

Mean field approximation

PRD 80, 043501 JHEP 0405:030,2004 Phys.Rev.D80:063533

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} + g^2(\phi - \phi_0)\langle\chi^2\rangle = 0$$

$$\langle \chi^2 \rangle \approx \frac{n_\chi a^{-3}}{g |\phi - \phi_0|}$$

Trapping effect

• Approximate the space-time by de Sitter metric

$$ds^2 = a^2(\eta)(d\eta^2 - d\mathbf{x}^2)$$

• A trapping point at

$$\phi = \phi_0$$

- Influence functional approach, trace out χ and then obtain the effective action Ann. Phys. 24, 118(1963) Feynman and Vernon
- Semiclassical Langevin equation

$$\langle \varphi_{\mathbf{k}}(\eta)\varphi_{\mathbf{k}'}^{*}(\eta)\rangle = \frac{2\pi^{2}}{k^{3}}\Delta_{k}^{\xi}(\eta)\delta(\mathbf{k}-\mathbf{k}')$$

Our model

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \,\partial_{\nu} \Phi + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \chi \,\partial_{\nu} \chi - V(\Phi) - \frac{g^2}{2} (\Phi - \Phi_0)^2 \chi^2$$

Shift the field $\phi = \Phi - \Phi_0$

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \chi \, \partial_{\nu} \chi - V(\phi) - \frac{g^2}{2} \phi^2 \chi^2$$

trace out ^χ to obtain the effective action arXiv:1101.4493 or PRD 84, 063527

$$S_{\text{eff}}[\phi, \phi_{\Delta}, \xi] = \int d^4x \, a^2(\eta) \, \phi_{\Delta}(x) \left\{ -\ddot{\phi}(x) - 2aH\dot{\phi}(x) + \nabla^2\phi(x) - a^2 \left[V'(\phi) + g^2 \langle \chi^2 \rangle \phi(x) \right] - g^4 a^2 \phi(x) \int d^4x' \, a^4(\eta') \, \theta(\eta - \eta') \, iG_-(x, x') \phi^2(x') + g^2 a^2 \phi(x) \xi(x) \right\}$$

Main result

$$\ddot{\phi} + 2aH\dot{\phi} - \nabla^2\phi + a^2 \left[V'(\phi) + g^2 \langle \chi^2 \rangle \phi \right] + g^4 a^2 \phi \int d^4 x' a^4(\eta') \times \theta(\eta - \eta') i G_-(x, x') \phi^2(x') = g^2 a^2 \phi \xi$$

where

$$G_{-}(x,x') = \langle \chi(x)\chi(x')\rangle^{2} - \langle \chi(x')\chi(x)\rangle^{2}$$
$$\langle \xi(x)\xi(x')\rangle = G_{+}(x,x') = \langle \chi(x)\chi(x')\rangle^{2} + \langle \chi(x')\chi(x)\rangle^{2}$$

The effect from χ on inflaton are given by dissipation term and noise term.

Approximate solution

• Drop the dissipation term $g^2 < 10^{-7}$

$$\ddot{\phi} + 2aH\dot{\phi} - \nabla^2\phi + a^2\left[V'(\phi) + g^2\langle\chi^2\rangle\phi\right] = g^2 a^2 \phi \xi$$

• Decompose $\phi(\eta, \mathbf{x}) = \overline{\phi}(\eta) + \varphi(\eta, \mathbf{x})$, then we obtain the equations

$$\ddot{\phi} + 2aH\dot{\phi} + a^2 \left[V'(\bar{\phi}) + g^2 \langle \chi^2 \rangle \bar{\phi} \right] = 0$$
$$\ddot{\varphi} + 2aH\dot{\varphi} - \nabla^2 \varphi + a^2 m_{\varphi \text{eff}}^2 \varphi = g^2 a^2 \bar{\phi} \xi$$

$$\ddot{\chi} + 2aH\dot{\chi} - \nabla^2\chi + a^2m_{\chi \text{eff}}^2\chi = 0$$

where $m_{\varphi {
m eff}}^2 = V''(\bar{\phi}) + g^2 \langle \chi^2 \rangle$ $m_{\chi {
m eff}}^2 = g^2 \bar{\phi}^2$

Weak coupling limit

 $g^2 \ll 1$

• EOM for χ

$$\ddot{\chi} + 2aH\dot{\chi} - \nabla^2 \chi + a^2 m_{\chi eff}^2 \chi = 0$$
$$m_{\chi eff}^2 = g^2 \bar{\phi}^2$$
$$\chi_k(\eta) = \frac{1}{2a} (\pi |\eta|)^{\frac{1}{2}} \left[c_1 H_\mu^{(1)}(k\eta) + c_2 H_\mu^{(2)}(k\eta) \right]$$
$$\mu^2 = 9/4 - m_{\chi eff}^2/H^2$$

• When $\mu = 3/2$, we can select Bunch-Davies vacuum to calculate the noise term and

$$\langle \varphi_{\mathbf{k}}(\eta)\varphi_{\mathbf{k}'}^*(\eta)\rangle = \frac{2\pi^2}{k^3}\Delta_k^{\xi}(\eta)\delta(\mathbf{k}-\mathbf{k}'),$$

The noise-driven power spectrum

$$\Delta_k^{\xi}(\eta) = \frac{g^4 z^2}{8\pi^4} \int_{z_i}^z dz_1 \int_{z_i}^z dz_2 \,\bar{\phi}(\eta_1) \bar{\phi}(\eta_2) F(z_1) F(z_2) \left\{ \frac{\sin z_-}{z_1 z_2 z_-} \left[\sin(2\Lambda z_-/k)/z_- - 1 \right] + G(z_1, z_2) \right\}$$

where

$$\bar{\phi}(\eta) = v(t_0 - t) = \frac{v}{H} \ln \frac{\eta}{\eta_0}$$

$$F(y) = \left(1 + \frac{1}{yz}\right)\sin(y-z) + \left(\frac{1}{y} - \frac{1}{z}\right)\cos(y-z)$$

$$\begin{aligned} G(z_1, z_2) \\ &= \int_0^{\Lambda} dk_1 \int_{|k-k_1|}^{k+k_1} dq \left\{ \left[\frac{2}{z_1 z_2 q k_1} \left(\frac{k_1}{q} - \frac{z_1}{z_2} - \frac{z_2}{z_1} + 2 + \frac{k^2}{z_1 z_2 k_1 q} \right) \right] \cos \left[\left(\frac{k_1 + q}{k} \right) (z_2 - z_1) \right] \\ &+ \frac{2}{kq} \left(\frac{1}{z_1} - \frac{1}{z_2} \right) \left[1 + \frac{k^2}{z_1 z_2 k_1} \left(\frac{1}{q} + \frac{1}{k_1} \right) \right] \sin \left[\left(\frac{k_1 + q}{k} \right) (z_2 - z_1) \right] \right\} \\ &= 2 - e^{\Lambda} dk, \quad \left(\int \left(2k_1 - \frac{1}{k_1} \right) \left(2k_1 - \frac{1}{k_1} \right) \right) \\ &- \int_0^k \frac{dk_1}{k_1^2} \sin(z_2 - z_1) - \int_k^{\Lambda} \frac{dk_1}{k_1^2} \sin \left[(z_2 - z_1) \left(\frac{2k_1}{k} - 1 \right) \right] \right\} \\ &+ \frac{1}{z_1 z_2 (z_2 - z_1)} \left\{ \int_0^\infty \frac{1}{k_1^2} \sin \left[(z_2 - z_1) \left(1 + \frac{1}{k} \right) \right] \end{aligned}$$

Power spectrum for a trapping point

Trapping point at $Ht_0 = 2, 4, 10$

$$\bar{\phi}(\eta) = v(t_0 - t) = \frac{v}{H} \ln \frac{\eta}{\eta_0}$$

 $a(\eta) = a(t) = e^{Ht}$

Closely spaced trapping points

$$g^2 \simeq 10^{-7}$$

$$\Delta_k^{\xi}(\eta) = \frac{g^4 \Gamma^4 H^2}{8\pi^4 v^2} \int_{z_i}^z dz_1 \int_{z_i}^z dz_2 \, z_1 z_2 \left\{ \frac{\sin z_-}{z_-} \left[\sin(2\Lambda z_-/k)/z_- - 1 \right] + G(z_1, z_2) \right\}$$

Smaller than de Sitter quantum fluctuation by factor about 400

Conclusion

 Lagrangian approach based on influence functional method the noise which is the particle number density fluctuation

studied by the authors, and we have dissipation term

• Trapping effect in weak coupling limit

Single trapping point

a dip on power spectrum and the noise driven effect gets bigger when inflaton away from the trapping point

Evenly spaced trapping points

the power spectrum is blue, however for high k mode, dissipation should damp the power spectrum in late time

• Systematic approach to study the trapping effect

For strong coupling, one should reexamine the trapping effect and the dissipation to both backreaction and fluctuation