Van der Waals like Phase Structure of Black Hole

Xiaoning Wu Institute of Mathematics, AMSS Cooperated with Y.Tian, C. Niu, Y. Cai and Y. Yang

Black hole mechanical law

Oth law : xis constant on horizon.

1st law:
$$\delta M = \frac{\kappa}{2\pi} \delta \frac{A_H}{4} + \Omega_H \delta J + \Phi_H \delta Q$$

2nd law : the area of horizon never decrease.

3rd law : Impossible to achieve $\varkappa = 0$ by a physical process.

• Compare with ordinary thermodynamic law

0th law : for a system at thermal equilibrium, T is a constant.

1st law: dU = TdS + PdV

2nd law : Entropy never decrease.

3rd law : Impossible to achieve T=0 by a physical process.

• Black Hole with cosmological constant

 Reissner-Nordstrom black hole with cosmological constant

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{n-1}^{2},$$

$$f(r) = k - \frac{8\Gamma(\frac{n}{2})M}{(n-1)\pi^{\frac{n}{2}-1}r^{n-2}} + \frac{Q^2}{r^{2n-4}} + \frac{r^2}{l^2}$$

$$\Lambda = -\frac{n(n-1)}{2l^2}$$

Where k=1,0,-1, corresponds to spherical, plane and hyperbola symmetry.

Kerr black hole with cosmological constant

$$ds^{2} = -\frac{\Delta_{r}}{\Sigma} \left(dt - \frac{a\sin^{2}\theta}{\Xi} d\phi \right)^{2} + \frac{\Sigma}{\Delta_{r}} dr^{2} + \frac{\Sigma}{\Delta_{\theta}} d\theta^{2} + \frac{\Delta_{\theta}\sin^{2}\theta}{\Sigma} \left(adt - \frac{r^{2} + a^{2}}{\Xi} d\phi \right)^{2},$$

$$\Delta_r = \left(r^2 + a^2\right) \left(1 + \frac{r^2}{l^2}\right) - 2Mr, \quad \Xi = 1 - \frac{a^2}{l^2},$$
$$\Delta_\theta = 1 - \frac{a^2}{l^2} \cos^2\theta, \qquad \Sigma = r^2 + a^2 \cos^2\theta.$$

Phase structure of black hole

Schwarzschild black hole

$$M = \frac{1}{8\pi T} \qquad \qquad C := \frac{\partial M}{\partial T} < 0$$

Thermal unstable.

> Reissner-Nordstroem black hole

$$\begin{aligned} r_{+}^{2} &- 2Mr_{+} + Q^{2} = 0, \\ \frac{1}{2\pi} \left(\frac{M}{r_{+}^{2}} - \frac{Q^{2}}{r_{+}^{3}} \right) = T \end{aligned}$$

$$T=\frac{1}{4\pi}\frac{-\Phi^4+\Phi^2}{Q\Phi}$$

$$\delta M = T\delta S + \Phi \delta Q.$$

Davis phase transition.

Schwarzschild-AdS black hole

$$\begin{split} &\frac{\Lambda}{3}r_{+}^{3}+r_{+}-2M=0,\\ &\frac{1}{2\pi}\left(\frac{2M}{r_{+}^{2}}+\frac{2}{3}\Lambda r_{+}\right)=T. \end{split}$$

Hawking-Page phase transition. (AdS/QCD)

Thermal structure of black hole

• Van de Waals gas

$$\left(p+\frac{a'}{v^2}\right)(v-b')=kT$$

Phase structure of Van de Waals gas

$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V, \quad C_P = T \left(\frac{\partial S}{\partial T} \right)_P, \quad \kappa_T = \left(\frac{\partial V}{\partial P} \right)_T$$

• Critical point

$$\begin{split} State \ equation, \\ \left(\frac{\partial P}{\partial V}\right)_c &= 0, \\ \left(\frac{\partial^2 P}{\partial V^2}\right)_c &= 0 \end{split}$$

 Critical exponents (see A modern course in statistical physics / Reichl, L. E.)

$$(1) \quad P - P_c \sim (V - V_c)^{\delta}$$

(2)
$$\frac{V_g - V_l}{V_c} \sim (-\epsilon)^{\beta}$$

(3)
$$C_P \sim (-\epsilon)^{-\alpha'}$$
 $(T < T_c)$
 $\sim \epsilon^{-\alpha}$ $(T > T_c)$

(4)
$$\kappa_T \sim (-\epsilon)^{-\gamma'}$$
 $(T < T_c)$

 $\sim \epsilon^{-\gamma}$ (T>T_c).

 Scaling law (see A modern course in statistical physics / Reichl, L. E.)

> $\alpha + 2\beta + \gamma = 2$ $\alpha + \beta(\delta + 1) = 2$ $\gamma(\delta + 1) = (2 - \alpha)(\delta - 1)$ $\gamma = \beta(\delta - 1)$

 $F(\Lambda^{p}\epsilon,\Lambda^{q}\Pi) = \Lambda F(\epsilon,\Pi)$

Main critical exponents

α	0
β	1/2
γ	1
δ	3

- Phase structure of Reissner-Nordstrom-anti de Sitter black hole
 - State equation of black hole

$$T = \left(\frac{\partial M}{\partial S}\right)_{Q} = \frac{1}{4\pi} \frac{-\frac{2\Lambda}{n-1}r_{+}^{2n-2} + (n-2)kr_{+}^{2n-4} - (n-2)Q^{2}}{r_{+}^{2n-3}}$$

$$\Phi = \left(\frac{\partial M}{\partial Q}\right)_{S} = \frac{(n-1)\pi^{\frac{n}{2}-1}}{4\Gamma(\frac{n}{2})}\frac{Q}{r_{+}^{n-2}}$$

$$\pi(\partial S) = 2(n-1)\pi^{\frac{n}{2}+1} \qquad r_{+}^{3n-4}T$$

$$C_Q = T\left(\frac{\partial S}{\partial T}\right)_Q = \frac{2(n-1)n^2}{\Gamma(\frac{n}{2})} \frac{r_+ r_+}{-\frac{2\Lambda}{n-1}r_+^{2n-2} - (n-2)kr_+^{2n-4} + (n-2)(2n-3)Q^2}$$

For non-extreme case, k=0,-1 has no phase transition, i.e. C_Q is always positive.

For spherical case,

With the formal correspondence $(\Phi, Q) \leftrightarrow (V, P)$

• Critical point

$$\left. \begin{pmatrix} \frac{\partial Q}{\partial \Phi} \end{pmatrix} \right|_{c} = 0$$

$$\left. \begin{pmatrix} \frac{\partial^{2} Q}{\partial \Phi^{2}} \end{pmatrix} \right|_{c} = 0$$
equation of state

• Isothermal curve

Critical exponents

Main critical exponents	
α	0
β	1/2
γ	1
δ	3

• Scaling law

$$\alpha + 2\beta + \gamma = 2$$

$$\alpha + \beta(\delta - 1) = 2$$

$$\gamma(\delta - 1) = (2 - \alpha)(\delta - 1)$$

$$\gamma = \beta(\delta - 1).$$

$$\alpha = 1 - \frac{1}{p}$$
$$\beta = \frac{1-q}{p}$$
$$\gamma = \frac{2q-1}{p}$$
$$\delta = \frac{q}{1-q}.$$

- Phase structure of Kerr-anti de Sitter black hole
 - State equation of black hole

$$J = \frac{r_+^2 \sqrt{(1 - r_+^2 + 4\pi r_+ T)(1 + 3r_+^2 - 4\pi r_+ T)}}{(1 - 3r_+^2 + 4\pi r_+ T)^2},$$

$$\Omega = \frac{\sqrt{(1 - r_+^2 + 4\pi r_+ T)(1 + 3r_+^2 - 4\pi r_+ T)}}{2r_+}.$$

• Isothermal curve

δ

3

Another phase structure

Remark :

- 1. How to understand such phase structure?
- 2. Relations with AdS/CFT
- 3. Relations with AdS/condense matter
- 4.

Thank you