


Quanturn properties of the inflaton

w Similar to the behavior of massless scalar field (x.t) in de Sittger space
: H
whose square expectation value behaves as (p(z.t)?) = (2—) Ht .
w

(Bunchi & Davis 78, Vilenkin & Ford 82...)
Brk ke ot e ik &’k ik

* @) = [ oo @0 a0 = [ o e

~ Gr(t)h(t) = =

* If we impose the normalization condition ¢x(t)¢x(t) =
—0(x —x’)

the canonical commutation relation [p(x,t), 7(’, )]
yields [ay.aj,] = 0@ (k — &)
where the conjugate momentum is given by =(z,t) = a*(t)¢(x, t) .

- i o fi d? d k2
% The mode function satisfies — 4 RHE th] or(t) =0

In de Sitter space and its normalized solution is given by
1H

T 3/2 r7(1) N 1y s —ikn
4H —n)” "Hjy 5(— M})—W(lnLak?})e

k

t
1
n / a0 er ~ o IS the conformal time and —#7 Halt) *




ok = o tikme T = o

Ha

iH [1+O ((Lf)] , for k< a(t)H

¢ (t) = —pr(t) in the superhorizon regime

So we find Qg (t) = pr(t)(ag — &"'_k)\

and its conjugate momentum reads

o~ i

T(t) = a(t)’¢r(t)(ag —a' ) —

'~ The same operator
dependence!

* When the decaying mode is negligible, ¥} and 7 have the same
operator dependence and commute with each other.

Long-wave quantum fluctuations behave
as If classical statistical fluctuations.

Origin of large scale
- structures and CMB
anisotropy




% |n the short wave regime well inside the Hubble horizon, k > aH

iH (l + 1kn)e %F»'rr_%ﬂe—ikn — 1 e ik _ 1 " _( 1 kphyst

NGy~ K adk 3’21/*2 k/a N T
In a short time interval when cosmic expansmn
is negligible, we may set dt=a(n)dn——t=an

This is the usual positive
frequency mode for the
Minkowski vacuum with
an unusual normalization

Pr(t)pr(t) — Pr(t)pr(t) =

T
— \/;H(—?; 3/ 2JH?{);JZ( kn)

defines the vacuum state with the appropriate Minkowski limit.



% The power spectrum reads

‘ (t)‘2 _ H2 (1 4+ (k )2) _ H2 f k . 0 constant and
ok - 2k3 L 263 " Ha(t) proportional to K
¥ Multiplying the phase space density, we find
Ak H
o (1) e dink = (gj : scale-invariant fluctuation

5

(o(x,1)?) = (%) Ht can be obtained by introducing IR and UV cutoffs as

HeH? 37, 2 ; ' horizon
o | , d3k H summing up super
(p(z.1)7) f e s = (g) Ht  components generated
during inflation

~ : . . H ,
~ Brownian motion with step +— and interval H™

H

27T
In each Hubble time H™, quantum fluctuations with an amplitude
o ~ ii and the initial wavelength j ~ His generated and
27T

stretched by inflation continuously.




£

with an amplitude
S ~ J_ri and the initial wavelength ; _ - Is generated and

'-;j 272.
stretched by inflation continuously.

7 .



% For later convenience, we derive the same result starting from the action
with the conformal time in the metric ds® = a?(n)(—dn® + dz?).

S = /\/ —gd*x [—%g““c‘h@&,gb — %ngbz} =35 /dnd‘zﬂc{az (0% — (V)?] — a*m?¢*}
% Using a rescaled field, x = a¢ the action is rewritten as
S = 1 dnd>x { 2 _(Vx)? — (azfm? — a—H) 2} 7=
n > ja-T | X X - X on

after integration by parts. So it is of the same form as a free-scalar action
with a time dependent mass.

* In the de Sitter background, a(n) = —1/(Hn), the mode function Xk
satisfies

‘ 2
1 2
X + kK XE — ~Yr = 0
: (—n)?

% The solution satisfying the normalization condition x'x* — XX*’ =1
as in the Minkowski space is given by

™\ 1/2 o (t
xk(ﬁ):(—z) Hz(;f?z(—kn)Z )

In agreement with the previous calculation.




Cosmological perturbation theory
% Incorporate linear perturbation to the FLRW background ds* = —dt* + a(t)*dz”.

ds® = —(1 + 2A)dt* — 2aB;dtda? + a*(6;; + 2H0;; + 2Hyp;; ) da'da?
traceless i,j=12,3

¥ Decompose perturbation variables to spatial scalar, vector, and tensor.

Bj — 83.3 + Ej, 83-37- — () (rotation free mode + divergence free mode)

0i; I o T
Hr;; = (31&33' — EJVZ) Hr + 0;Hrj + 0; Hr; —|—

A T7 ‘ k ; _
OjHr; =0, 0;Hrr"; =0, Hrp’; =0 transverse-traceless mode

A, B, H;, & Hp Scalar modes- - - Density/Curvature Fluctuations
B, & fITj Vector modes- -

Decaying modes only ]

HTT%-J- Tensor modes- - - Gyavitational Waves

eefor, and tensor modes are
r mode also behaves independently.

% In the linear perturbation theory, scalar,
decoupled from each other. Each Fou

behave as growing modes in a contracting universe



X First consider scalar modes in Fourier space
ds® = —(14+2AY)dt* —2aBY;dtda’ +-a*(9;;+2HL Y 6;j+2H7Y;;)d' da?
Y, Y;, Yi; are scalar harmonics defined by

Y=Y, = eZk'm, P = —i—’ezk'm Yi; = (— I éij) ezk L

* Here “AY" means AY =3 A.Y; =/
k

% Each perturbation variable is a quantity in Fourier space, e.g. A = Ap ().

% Physical meaning of each perturbation variable.

A: Fluctuation of the lapse function (Newtonian Potential)
B: Fluctuation of the shift vector
H: Fluctuation of the spatial volume

Hp: Spatial anisotropy



% Here we started from the background FLRW spacetime and then incorporated
perturbations. But actually the real entity is an inhomogeneous spacetime which may
be decomposed to a background and perturbations around it. The definition of the
background is not unique. We have gauge modes corresponding to the freedoms

associated with the definition of the background. H L HT
and2 AB. Y
6p(x) = ¢,(X) — ¢ (X) Backd™ "
Background 1 A, B, H;, Hr
actual geometry xH

* To see how the gauge modes appear, we introduce two coordinate systems
corresponding to Background 1 (# ) and 2 (%) and compare expressions of
perturbation variables at the same coordinate value.

Y Suppose that two coordinates are related by the following scalar -type transformation.

=0 _ .0, 5.0 _ 0
T =x for =x +1Y T =24 oxt =g _I_& gradient of a

% Then the metrices of the two coordinates are related as scalar
_ Ox® P
€Tr) = ol _
g;u/( ) OTH OTY g 3(T C)T)

— gI«W(‘/E) o .gau(x) (6‘/1706);,& o g,uﬁ(x)(dxﬁ),u — g,Lu/,)\(:I:)Ox)\



%* In terms of perturbation variables we find

: — k
A=A-T, HL:HL—gL—HT,
_ ok _ ‘
B:B+aL+ET, Hpr=Hr + kL,
% We can constitute two functions independent of generators L. and T

namely, gauge invariant quantities.  (Bardeen 80)
2

a - a o a -
b, = A+LLB B——(H 2—H)_ _
A —I_k —I_k 12 T + ST =Y =@
1
by = Hp+-H B——H =Q=-Y
H L-|-3 T—|—k 2 1T
1 y
R=Hr + §HT Japanese

notation
Kodama&Sasaki PTP Suppl 78(1984)1



¥ Gauge-invariant variables can be defined similarly for matter contents, too.
(Example) A scalar field transforms as ¢(X) = ¢ (X) by definition.

o(t,x) = ¢(t) + AgY

o(t,x) =t —TY, 27 — LY?) = ¢(t — TY) + AgY
= o(t) — o()TY + AQY

o A= Ap — T .
B=B+al+-T,
a
FT = Hp + kL,
. a a - .
o¢:A¢+E(B—EHﬂ¢
gauge-invariant scalar field perturbation



¥ In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

_ : _ k

14:44_T, HL:HL—gL_HT,

_ .k L Q I :

B=B+al+ =T, Hp =Hp + kL, Ap = A¢ = oT
a

*
Let H7 = 0 then L is fixed. Thenlet B = 0, then T is also fixed.

2

a - a
P = A+-B+-B-— H —0—2 H
445@‘4, HLE@H 4 k-l k kZ(T T)
by = HL+§HT+kB—k—2HT.

ds® = —(1+20,Y)dt* + a*(1 + 20zY )dx?

0p = Ad 56 = Ad+ — (B—ZHT)QS



¥ In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

_ : _ k

14:44_T, HL:HL—gL_HT,

_ .k L Q I :

B=B+al+ =T, Hp =Hp + kL, Ap = A¢ = oT
a

*
Let Ajp = Ao — ¢T = 0, then T is fixed.

Also let H = 0, then L is fixed, too.

Aqf) = (0 :scalar field is homogeneous.



¥ For the moment, we work in the longitudinal gauge
ds® = —(1 + 20 ,4Y)dt* + a*(1 + 20yY )dx?
and introduce scalar-type perturbations to the perfect fluid matter.
T" = Pgt" + (p + P)utu” (utu, = —1)
p%p—l—é}o)ﬂ ut = (170303 0) — (1_14Y3’1)Yj/&)7
P — P+46PY, u, =(-1,0,0,0) = (=1 — AY, avY))
Since gauge is already fixed, these variables are already gauge-invariant.
* Write down the perturbed Einstein equations 6G*, = 8w GoT*,

0T% = —pdY O = 5p/p
2 (5Tj0:—(p—|—P)§Yj T, EOP/P
6H@a — 6H P — 2=y ) Y 7. =0

0T = P)vY; : -
j = alp+ P)oY; anisotropic stress

o=
(

(2kH€15A — 2%kdy) Y,

z @A 12 @H) Y/ 0T ; = P(mpd}Y +mrY";)

i o2 | 1% ‘ 2 k? 2 k* y k* .
oG = {(2H + 4—) bp+2HD, — g—@A — 6H®y — 205 — —3—@1{} 05 — —(Pa + @)Y
a : a



% From Hamiltonian and momentum constraints we find
k2 ‘ H
2—&51{ = 87GpA =3H*A A=6+3(1+ w)%fv (w = P/p)

IS the comoving density perturbation.

* Y, termyields @y + P4 =0 @
]{2

* As aresult we find the Poisson equation ——® 4 = AnGpAdA @
a

* Dynamical equation may be found from4’Y term or from 07 ,.,, =0 .

- k
A—3HwA=—(14+w)—v (@ continuity eqgn.

a

1 k k ., dP P

v+ Ho = p—I——P_(OP —c20p +cipA) + @A @ Euler eqn. ;= 7
* From D2@®®@), we find
3 H
G+ Hbp = —47T(;r(p—|—P)EU = —5(1+w)HY T = ‘:”TU
Momentum constraint
- 3 ‘
T—|—§H(1—I—’lU)T:—H@H—I— T (cs? A+ wl)
Euler egn. . PlI'=0P — 025,0



* Subtracting each other we find

.2
%(QSH - T) = _l fu},((js2A —|—'UJF) 2;@}1 — 871-(;pA — 3H2A

If there are onlv adiabatic fluctuations, e.g., single fluctuating component, we find
PI'=6P—c25p=0,since 2 = P/p = 0 P/dp holds. Then

d H . 2e2H [k \* K
— (P —7) = — A= ——— o A
dt( H ) T 301+ ) (a,H) H \ 0 for - —0

superhorizon limit

% Comoving curvature perturbation

_ all IS conserved outside the Hubble radius
@H — 7T = RS— —U T\),C . . . .
If only adiabatic fluctuations are present.

er with £ = K (X, ¢), we find
Kx

Kx +2XKxx

'vature perturbation also holds.

¥ In the case of single scalar-field ma

cs*A+wl =&EA  with

so the conservation of comoving

This gives the sound velocity of a scalar field.
It is unity for canonical fields.



% Using the momentum constraint we can express R. with @z only.
'RC = @H — 7T = @H +

31+ w) (®r + H '®x) = Bardeen’s
* Q — const = (' can be solved as a first-order differential equation

_ H [*
* The solution is given by @5 = (7 (l — — / a(t’)dt’)
a
namely,

. H [
Growing adiabatic mode @5 = (l — — / a(t’)dt’)

a
H

a

Decaying adiabatic mode ng =

| o o> ! [ 2C forw=1
, _ A - G _ Y ! = 3 1 3
* Whenw = P/p = const we find &%= ¢, (l e +w)) {

3C, forw=0

H
* In a contracting phase the “Decaying mode” P = — grows severely.



~ Is conserved outside the Hubble
horizon.

This is the quantity we should
| calculate during inflation.




Curvature perturbation from inflation

¥ Incorporate curvature perturbation to FLRW Universe and calculate
its action in the Einstein+scalar model.

g — fd4$ /s {ER + K(X, O)] inf:Iude_ both potential-driven and
k-inflation models

% Background equations
3MZH? = p=2XKx — K, 2MZH+3MzZH?* = —-P = —-K

: _PLX@ 2 2 I{- 5 9 . 2 PX KX
o+3HC O+ ——c.o e =0, with ¢ = = — ; -
Ky & Ky 3 ’ px  Kx +2XKxx

sound speed of perturbation

% We adopt 3+1 ADM decomposition which is useful to separate constraint equations.
ds® = —N?2dt* + hi;(da* + N'dt)(da’ + N?dt), hi; = a(t)e?™6;;

‘R = 'R .represents comoving curvature perturbation conserved outside the horizon.

No gauge mode in L, since we have Hr = Hr + kL = 0.
Setting Ap = A¢p — ¢T = 0, gauge in T is also fixed.




ds® = —NZ?dt* + h;;(dz' + N'dt)(dz’ + N7dt), hi; = a*(t)e* s
* The action then reads

S = é /dj‘x\/_j\T(JIC R‘3J+2ﬁ)+‘1£€ /d%\/Ei?\f—l(EijEﬁ—E?)H*- )

Total derivative ter}ms

where F,. = not affecting field eqgs

ij (Jil,ij — ;"\"Tﬂ l\.}|’1) F =1rE

J

b | =

* Weset NV = 1 + o) N; — Jf1)) to analyze linear scalar perturbations.

* The Hamiltonian constraint obtained by differentiation w.r.t. N reads

K K~ 1 5
R® 4o — . E..EY7 —F*) =0
A MZ  N? vz (B )
H 5 L o, 2 . I, S
—2(9-"1;'} — ——2tf) R -+ ZCI ﬂf(_‘;Z — XI’&X -+ ZX-'IXXE_’

a L



¥ The momentum constraint obtained by differentiation w.r.t. N'reads
{W(Eg — B4))] | =2Ha, =R =0 a=R/H

* Now that both a and y have been expressed by 7TR.. we can obtain
the second order action for R as

(OR)? } H

_ : > ..
SQ — J\[é /dtdgfra?‘ [ERZ —&H 5

a

. . 2
% Introducing new variables, z=2 :Z 2 Cg“ ,and v =MqozR,
the action is expressed with the conformal time n as
_ 1 ‘ ; ‘ 2
So = — /dfr]dga”: [’U’Z — cZ(0v)* + _,,Uz]
2 - Z
which is equivalent to an action of a free scalar field with a time-dependent

Z// ‘ T]H
mass squared ~_ — HZ[Q_ e MHN o NEy S TH
q . (aH)” |( e — S+ 2)( s -+ 5 H+2H

Cs EH

Nu ) S NH

HCS? TH = HEH

S



_ 1 : : ‘ A ' E
So == [ dnd®z [,012 — 2 () + —fvz} s=— py=-—A

2_ y H(l, H€H
= =(aHP [2 = —s+ ) (1 —s+ T0) = — + ) =(aH)*(2 + q)

% Using the de Sitter scale factor a=—Hi, the normalized mode function reads

n
ﬂn)m () o1 ( i ) Cikean 3 4NT_3
v = (——2) " HWO (—ken) = 1 — ke, 2 (1 L) el
Uk ( 1 v ( C.?Y) \/% kf(fs'n € g 2( Qq) 2

* |t behaves similarly to a massless scalar field in de Sitter background,
so that long-wave nearly scale-invariant fluctuations will be generated.

4k ; Ark3 | v |2 H?
Pr(k) = | Ri|? = 5 = o2
(27) (27)3 | 2 S8meMgcsen

evaluated at the sound
horizon crossing —kc.7 =1



47k ‘ 4rk3 v |2 H?
]{, — R . 2 — ‘ p— -
Pr(k) (27?)3‘ d (2m)3 | 2 871’2]\-{%(3551{

% The spectral index of the curvature perturbation is given by
L dlnPR(k) H s cr

Ng — = —2eg—Nyg—S €fH=E—7m 5= NH=
: dnk / @ He, Hen
% In the canonical slow-roll inflation, using the slow-roll equations we find
H ¢52 3¢2 Mé (V'jz V"
H H 2 |\/|(2;H2 ZVT > | v v N Gy TH Ty v
SO 3Hg=-V'

n,—1=-6¢, +2n,

S

*  The scale dependence of the spectral index, “Running”
dns VV’”

dlnk=16g\,77v—24g\f—2§v E =M 2

These are important observable quantities!




Tensor perturbation from inflation

* We derive a second-order action for the tensor perturbation 7, .
It is wise to make use of the known results on GW in the Minkowski space.
So we first study perturbation around 7. taking metric as 9ur = Muv + Py,

Taking the TT gauge hoo = ho; = 0, hf = hj:j =0, h,%i; — 0,
the Ricci scalar reads up to the second order
3 | R
R = h”h,@‘ju + 422,” P hiju — Eh” hi
* The transformation from g,, = 1., + h,.
0 ds? = a?(n) [—dn? + (045 + hyj)dx'dx?] = g, dotdx” can be done
by the conformal transformation g, = 0%g,,,,-
% The Ricci tensors in two conformal metrices are related as
R, =R, -2V, V,In2 —¢g,,°" VsV In{?

+2V, In 2V, n 2 — g,,9° Vo In 2V, In §2



* Putting {2 = a(n) , the Ricci scalar reads up to the second order

/! /
R=a"" (R + 6a— — SCL—hijh;j)

a a
¥ Since we are interested in tensor perturbations in the inflaitonary Universe
let us introduce a cosmological constant to drive inflation, to consider

_ M2 ~ _
S, = =~ /(R — 2A)\/—gd4:z:‘ using the background
2‘ : 2nd order eq. Aa* = 2ad” — a’?
ME,

= 3 / dndB:z:aQ(hj’hff — hjf,-,lhf’l)

* Introducing new variables zp = a/2,u;; = Mgzrh;;
the action reads
!/

+ 1 3 ’2 2, 4 9

ST = 5 /dnd T [u%—j — (Vu;)” + — Ui
which is equivalent to the action of a massless scalar field.
In the de Sitter background a = —1/(Hn), we find

12
&fj = (—?) Hé?(—kn)e%(k), A=+, x

as before.



* Introducing new variables zr = a/2,u;; = Mgzrh;;
the action reads

1 3 al! 5
St = 5 dnd-x [ — (Vuy,)* + —uj;

which is equwalent to the action of a massless scalar field.
In the de Sitter background a = —1/(Hn), we find
T\ /2
ull = (_T) 1Y (~kn)ed(k), A=+, x
as before.

1

# In case 0 , we can express L 1 ( N )E_VT 31—¢/3
a = — 1/ = —

Ey U, P Hmn.1—¢ \—n, S

TN\ L/2 -
ul = (_Z) HY (—kn)el (k), A=+, x

i]
es>(k) is the polarization t ith (e (k)e*B (k)) = §AB
ij polarization tensor with (¢ ?j( )e (k)) =

% The power spectrum reads
Amk® Ly Amk® ujuttt o 2H?
(27)3 1

(2m)% M2z T2 M2




* Tensor spectral index d1In Pr (k)

= = —2
it dlnk H

¥ The tensor-to-scalar ratio

Pr(k) =
Pr (k) P T2 MZ
T =
/P’R,(k) Pr (k)= H*
K B2 M2coep

r = 16cseg = —8csny  consistency relation



Low frequency components may be observed by
B-mode polarization of CMB anisotropy

Quadrupole
Anisotropy

Thomson
Scattering

Linear
Polarization

 Polarization is generated by quadrupole temperature anisotropy.
* E-mode from both scalar (density) and tensor perturbations.
* B-mode only from tensor perturbations.

Planned or ongoing experiments and their expected sensitivity

PLANCK r ~0.1 QUIET+PolarBear r ~0.01
EPIC r ~0.001
CMB-POL r ~0.001

WMAP7 r <0.25



Just one summary plot !

by M. Hazumi

B

Power Law
Chaotic p=1
Chaotic p=0.1

SSB (N.=47-62)
Planck
QUIET+PolarBeaR
CMB Satellite

F
[ OregroundSynchrotromDust




Some of the recent particle physics models of inflation

=

TOSOS gt

-

o U Ik

* 111 - 9 -
KK Newer models of stringy” inflation 5
* DI | extra dimension
* MonOdoromy mOdeI (Silverstein & Tong 04)
\ r =0.03 (Silverstein & Westphal 08) .
i . ] >hyama & Kinoshita 07)
* Re¢ * Flbre |nﬂat|0n (Cicol, B 20 4o 08) ), Kallosh, Linde &Quevedo 04)
— ICOll, burgers, ueveao .
' 0'905 _ _ . Ining of parameters
. A * Warped Wilsonline DBI inflation
r~0.1 (Avgoustidis & Zavala 08) vity
etc
* Hiyyonauun (Kaloper, Sorbo & JY U8)
r =0.003 detectable tensor perturbation even if variation in ¢ is small
* Chaotic inflation in supergravity with shift symmetry
(Kawasaki, Yamaguchi & Yanagida 00)
r =0.15 allows large variation of ¢ thanks to the shift symmetry

* MISSM inflation (Allanverdi, Engvist, Garcia-Bellido & Mazumdar 06)
The inflaton can be identified in MSSM w/ fine-tuned parameters.
r ~10* |t can occur only if previous inflation with a slightly higher

energy scale is realized with a sufficiently low reheat temperature,
very contrived. (Kamada & JY 09)
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Theory and observations basically agree.

WMAP 7yr ¥
ACBAR %
QUaD 2
6 parameter fit
of flat ACDM model

iﬁ‘-‘mh

100 500 1000 1500 2000
Multipole Moment (/)

{




causal seed

model ™

(cosmic strings

textures etc) rvature model

/

Inflation (adiabatic)




Spatial curvature
1_‘Qtot0 K ]
—0.0133 < Q2o = 575 < 0.0084 (S)E\’%CL)j
EE]

Amplitude and spectral index of curvature perturbation

Pn(k’g) — (2.4

30 +0.091) x 1077 ko = 0.002Mpc~?

ne = 0.968 =0.012 (7year WMAP+BAO+HST)

on which
we use.

Based on Markov-Chain-Monte-Carlo method
Values of these parameter change depending

parameters to fit and which dataset




Theory and observations basically agree.

WMAP 7yr § 1

ACBAR %

QUaD ¥

6 parameter fit -
of flat ACDM model

e

100 500 1000 1500 2000
Multipole Moment (/)

We wish to proceed model selection of inflation...



Observables: Large-field model

Vigl= —m a ]
* Slow-roll parameters & =1y =2(%j & =0

» Number of e-folds from ¢ =¢, to the end of inflation

2 V[
N = det_jH IVW]‘W 4(¢_Nj A

\Y [¢] Vgl Mg
» Amplitude of fluctuatlons é@/I/A
, eff
S )

H - 1 ( mN 9 M
@, (K,) = 8MZz, 677 EMG j =2.4x10 Chauotic inflation

= m=1.6x10"GeV, 1<8x10" for %¢4. @N =55

*» The coupling between the inflaton and other fields must be small.
2

e.g. Yukawa coupling h <107 decay width 7, = :— m < 6x10°GeV
T

s
/2

2004\ /4 — o 200WYR oy YR
) AMel, =10 (—) ( ) Gev

7. 105GeV



Observables: Large-field model

Vigl= —m a
M 2
* Slow-roll parameters & =1y =2(7Gj & =0

* Number of e-folds from ¢ = ¢, to the end of inflation

2 V[
N = IHdt de¢ I IV[¢]d¢ 4(¢_Nj A(P]

Vv [¢] Vgl Mg
= Spectral index and its scale dependence é/i//l
oY Lo

2 dn M .
n, =1—N =0.964, s =—6.6x10"". Chaotic inflation

@ N =55

dInk

* Tensor-to-scalar ratio

r=16¢, =0.15. Observable by Planck!



Observables Small-f eld model

* Slow-roll parameters
SMZ ¢* 4 MEZ (3¢% — v?) 96 M o2

O — V=) 02 —v2)2 ()~ — p2)-
(G2 —v22 VT T (g0 (62 — v%)?

Vgl

* |nflation ends when &, =&, =1 at the field value

do Ioh | Of
— = —In— — —
0 | ON ]




Observables: Small-field model ;*

on/ T T68TR(B—v2)2

Taking N =55, =15, the normalization gives 4 =7x10"

Pr(ko) =

(687~ (T (0637~

» Spectral index and its scale dependence

ne—1—=— —
_ (()2\ - 'I—-"z)z

dn, (32002 9% + 19203 ) M

dink (()z\ —p2)d




Observables: Hybrid inflation model

Vgl =V, +m_¢2 near the origin V
2 4

» Consider false-vacuum dominated case

LM m2¢2:i(mj“ )\ MZm®> m
o2V, ) 18H) (M) MTT, T T
0

. . 4
* Spectral index and its scale dependence | |
2m?
n-1=2n, =
S 77V 3H 9

x Tensor-to-scalar ratio
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Inflation models may be distinguished by observations.
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Deviation from Gaussian: NonGaussianity of fluctuations

may also help distinguish models.

» Potential-driven slow-roll models
NonGaussianity is small, because the inflaton is very weakly coupled
with other fields as we have seen.

» Kk-Inflation, G-inflation,...
NonGaussianity can be large.

» Beyond the single-field inflation

NO detection yet



Theory and observations basically agree.
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If you look at it closer in detall...




Angular Scale

: & Reconstruction of
primordial power
) spectrum from CMB

Deviation around kd =f=40
can be seen even In the
binned C , but those at
125 can not be seen there.
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In fact, if we change the wavenumber domain of decomposition slightly,
we obtain a dip rather than an excess even for the band power analysis.



Forward Analysis

* Assume various shapes of modified power spectrum P(k)
with three additional parameters in addition to the standard
power-law.

~  Perform Markov-Chain Monte Carlo analysis with CosmoMC
with these three additional parameters in addition to the standard
6 parameter ACDM model.



Transfer function shows that C, depends on P(k) with kd > ¢ .

Bk Ax
(2m)3 (20 + 1)?

Xo(k)|PP (k)

10 100
multipole moment (1)

If we add some extra power on P(k)
at kd ~125, it would modify
all C,/’swith (<kd~125.
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Simply adding an extra power
around kd ~125 does not
much improve the likelihood,
because it modifies the
successful fit of power-law
model at smaller ¢’s.



Consider power spectra which change C,’s only locally.

A(K) = K*P(K)
A ¢ VYTl e

> kd

Height, location, & width of the peak
\/\/ are 3 additional parameters.

W type
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N 0.744 0.744 0.740 0.743 0.738
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Unlike our reconstruction methods, MCMC calculations use
not only TT data but also TE data.

AZa due to improvement of TT fit = —12.5
AyZ dueto improvement of TE fit= —-8.5

It is Iintriguing that our modified spectra improve TE fit significantly
even if we only used TT data in the beginning.

TT(temp-temp) data and model TE(temp-Epol) data and model
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*

Posterior probability to find vanishingly small deviation from a power-law.

PB<1X10719) =48 X107

based on a local analysis in the range A4kd = 20 .

Posterior probability to find vanishingly small deviation from a power-law
at any observed wavenumber domain.

PB<1Xx10710) ~8 X 107 ~.

based on a global analysis in the range 40 <kd <380 .

This may or may not be so by chance.
In either case, however,...



The presence of such a fine structure changes the estimate of

other cosmological parameters at an appreciable level by Planck.

Maximum of the difference from the power law

VA-type

WMAPS

Planck

Power law

0.0438
0.256
0.744

72.1

23.88
0.964
0.0864
0

A-type

0.0441
0.256
0.744
72.1
23.24
0.975
0.0879
—6.5
124.5
23.80
2651.6

3

0.0443
0.260
0.740
71.7
2351
0.969
0.0846
—19
124.4
47.26
2639.1

3

S-type

0.0441
0.257
0.743
72.0
23.34
0.970
0.0835
—22
124.5
55.66
2636.2

3

“'V—type
0.0444

0.262
0.738
71.6
23.90
0.964
0.0845
—16

37.95
2641.8

3

A max

0.0006
0.006
0.006
0.5
0.54
0.006
0.0029

0.0030
0.027
0.015
2.7
1.12
0.015
0.017

0.0003

0.009
2.7

0.0045
0.005




Higher frequency tensor perturbation

Its spectrum can be used to probe post-inflationary thermal history
of the early Universe.

r sensitivity curves of DECIGO
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Conclusion

The precision cosmology is entering a new era with even higher
precision.

Hopefully we will be able to know which if any is the correct
Inflation model that occurred in the early Universe.






