


If we impose the normalization condition                                            , 

the canonical commutation relation                         

yields                       , 

where the conjugate momentum is given by                                 . 

Similar to the behavior of massless scalar field           in de Sitter space 

whose square expectation value behaves as                                    . 

( , )t x

The mode function satisfies  

 

in de Sitter space and its normalized solution is given by 

is the conformal time and                       . 

(Bunchi & Davis 78, Vilenkin & Ford 82…) 



for 

in the superhorizon regime 

So we find 

and its conjugate momentum reads The same operator 

dependence! 

When the decaying mode is negligible,          and          have the same 

operator dependence and commute with each other. 

Long-wave quantum fluctuations behave  

as if classical statistical fluctuations. 

Origin of large scale 

structures and CMB 

anisotropy 
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In a short time interval when cosmic expansion 

is negligible, we may set                                      . 

In the short wave regime well inside the Hubble horizon, k aH

This is the usual positive 

frequency mode for the  

Minkowski vacuum with 

an unusual normalization 

 

 

defines the vacuum state with the appropriate Minkowski limit. 
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The power spectrum reads 

constant and 

proportional to  
3k

Multiplying the phase space density, we find 

: scale-invariant fluctuation 

can be obtained by introducing IR and UV cutoffs as 

: summing up superhorizon 

  components generated  

  during inflation 

In each Hubble time        , quantum fluctuations with an amplitude 

                  and the initial wavelength              is generated and 

stretched by inflation continuously.  

1H

2

H



  1H 

 Brownian motion with step           and interval          
2

H


 1H



In each Hubble time        , quantum fluctuations with an amplitude 

                  and the initial wavelength              is generated and 

stretched by inflation continuously.  

1H

2

H



  1H 



For later convenience, we derive the same result starting from the action  

with the conformal time in the metric                                             . 

Using a rescaled field,                  the action is rewritten as 

after integration by parts.  So it is of the same form as a free-scalar action  

with a time dependent mass. 







 



In the de Sitter background,                             ,  the mode function       

satisfies 

The solution satisfying the normalization condition 

as in the Minkowski space is given by 

in agreement with the previous calculation. 



Decompose perturbation variables to spatial scalar, vector, and tensor. 

(rotation free mode + divergence free mode) 

2

Incorporate linear perturbation to the FLRW background                                 . 

traceless , 1,2,3i j 

transverse-traceless mode 

& Scalar modes・・・Density/Curvature Fluctuations 

Vector modes・・・Decaying modes only 

Tensor modes・・・Gravitational Waves 

& 

In the linear perturbation theory, scalar, vector, and tensor modes are 

decoupled from each other.  Each Fourier mode also behaves independently. 

behave as growing modes in a contracting universe 



First consider scalar modes in Fourier space 

are scalar harmonics defined by 

Here “     ” means                                                   etc. 

Each perturbation variable is a quantity in Fourier space, e.g.                     . 

Physical meaning of each perturbation variable. 

Fluctuation of the lapse function (Newtonian Potential) 

Fluctuation of the shift vector 

Fluctuation of the spatial volume 

Spatial anisotropy 



Here we started from the background FLRW spacetime and then incorporated 

perturbations.  But actually the real entity is an inhomogeneous spacetime which may 

be decomposed to a background and perturbations around it.  The definition of the 

background is not unique.  We have gauge modes corresponding to the freedoms  

associated with the definition of the background. 

Background 1 

actual geometry 

To see how the gauge modes appear, we introduce two coordinate systems 

corresponding to Background 1 (      ) and 2 (      ) and compare expressions of 

perturbation variables at the same coordinate value. 

Suppose that two coordinates are related by the following scalar-type transformation. 

gradient of a 

scalar Then the metrices of the two coordinates are related as 

, 

( ) ( ) ( )x x x   



We can constitute two functions independent of generators      and      , 

namely, gauge invariant quantities. 

  

   

(Bardeen 80) 

In terms of perturbation variables we find 

Japanese 

notation 

Kodama&Sasaki PTP Suppl 78(1984)1 
curvature perturbation 

s 



Gauge-invariant variables can be defined similarly for matter contents, too. 

(Example) A scalar field transforms as                      by definition. ( ) ( )x x 

gauge-invariant scalar field perturbation 



In fact, we do not need to start with the most general metric and consider 

gauge transformation to find invariant quantities, but it is sufficient if the 

gauge degrees of freedom, L and T are fixed. 

 

Let               , then L is fixed.  Then let              , then T is also fixed. 

 

Longitudinal Gauge 



In fact, we do not need to start with the most general metric and consider 

gauge transformation to find invariant quantities, but it is sufficient if the 

gauge degrees of freedom, L and T are fixed. 

 

Let                                 then T is fixed.   

 

Also let                , then L is fixed, too. 

 

Unitary Gauge 

: scalar field is homogeneous. 



For the moment, we work in the longitudinal gauge 

 

and introduce scalar-type perturbations to the perfect fluid matter. 

Since gauge is already fixed, these variables are already gauge-invariant. 

Write down the perturbed Einstein equations 

  

0T 
anisotropic stress 

Hamiltonian  

constraint 

Dynamical eq. 



From Hamiltonian and momentum constraints we find 

is the comoving density perturbation. 

term yields ① 

As a result we find the Poisson equation ② 

Dynamical equation may be found from        term or from                        . 

③ 

④ 

continuity eqn. 

Euler eqn. 

From ①②③④, we find 

Euler eqn. 

Momentum constraint 



If there are only adiabatic fluctuations, e.g., single fluctuating component, we find 

                                      , since                                    holds. Then  

Subtracting each other we find 

is conserved outside the Hubble radius 

if only adiabatic fluctuations are present. 

Comoving curvature perturbation 

0

0 for 0
k

aH


superhorizon limit 

In the case of single scalar-field matter with                        , we find 

with 

so the conservation of comoving curvature perturbation also holds. 

This gives the sound velocity of a scalar field. 

It is unity for canonical fields. 

s 



Using the momentum constraint we can express       with       only. 

Bardeen’s ζ 

can be solved as a first-order differential equation 

The solution is given by 

 

namely, 

 

Growing adiabatic mode 

 

 

Decaying adiabatic mode 

When                             we find 
2 1

13 3

3
15

 for 

  for 0 

C w

C w


 



In a contracting phase the “Decaying mode”                    grows severely. 



Comoving curvature perturbation 
is conserved outside the Hubble  
horizon. 
This is the quantity we should  
calculate during inflation. 



Incorporate curvature perturbation to FLRW Universe and calculate  

its action in the Einstein+scalar model. 

include both potential-driven and 

k-inflation models 

Background equations 

with 

sound speed of perturbation 

We adopt 3+1 ADM decomposition which is useful to separate constraint equations. 

represents comoving curvature perturbation conserved outside the horizon. 

No gauge mode in L, since we have                                . 

Setting                                       gauge in T is also fixed. 



The action then reads 

where 
Total derivative terms 

not affecting field eqs 

We set                                                 to analyze linear scalar perturbations. 

perturbation variables 

The Hamiltonian constraint obtained by differentiation w.r.t.  N  reads 



The momentum constraint obtained by differentiation w.r.t.        reads 
iN

Now that both α and ψ have been expressed by        , we can obtain 

the second order action for        as 

22
,H

s

aa
z

H c


 Introducing new variables,                             and                     , 

the action is expressed with the conformal time η as 

which is equivalent to an action of a free scalar field with a time-dependent 

 

mass squared 





It behaves similarly to a massless scalar field in de Sitter background,  

so that long-wave nearly scale-invariant fluctuations will be generated. 

evaluated at the sound 

horizon crossing 1skc  

small slow-variation parameters 

Using the de Sitter scale factor             , the normalized mode function reads 
1

a
H

 



The spectral index of the curvature perturbation is given by 

In the canonical slow-roll inflation, using the slow-roll equations we find 

 

 

 

so 
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These are important observable quantities! 



We derive a second-order action for the tensor perturbation        . 

It is wise to make use of the known results on GW in the Minkowski space. 

So we first study perturbation around       taking metric as                           .  

Taking the TT gauge                                                                             , 

the Ricci scalar reads up to the second order 

The transformation from                         

to                                                                                       can be done 

by the conformal transformation                        . 

The Ricci tensors in two conformal metrices are related as 



Putting                     , the Ricci scalar reads up to the second order  

Since we are interested in tensor perturbations in the inflaitonary Universe 

let us introduce a cosmological constant to drive inflation, to consider 

2nd order 

using the background 

eq. 

Introducing new variables 

the action reads 

 

 

 

which is equivalent to the action of a massless scalar field. 

In the de Sitter background                          , we find 

 

 

as before. 

3 2



Introducing new variables 

the action reads 

 

 

 

which is equivalent to the action of a massless scalar field. 

In the de Sitter background                          , we find 

 

 

as before. 

3 2

0H In case                , we can express  

is the polarization tensor with  

The power spectrum reads 

2 2

G TM z



The tensor-to-scalar ratio 

Tensor spectral index 

consistency relation 



Low frequency components may be observed by  

B-mode polarization of CMB anisotropy 

• Polarization is generated by quadrupole temperature anisotropy. 

• E-mode from both scalar (density) and tensor perturbations. 

• B-mode only from tensor perturbations. 

E mode 

B mode 

PLANCK  ｒ ～0.1              QUIET+PolarBear   ｒ ～0.01 

EPIC         ｒ ～0.001     LiteBIRD                ｒ ～0.001 

CMB-POL   ｒ ～0.001 

Planned or ongoing experiments and their expected sensitivity 

WMAP7       ｒ <0.25 



Just one summary plot ! 

(LiteBIRD) 

by M. Hazumi 



It can occur only if previous inflation with a slightly higher  

energy scale is realized with a sufficiently low reheat temperature, 

very contrived. (Kamada & JY  09) 

DBI inflation induced by moving branes in the warped extra dimension 
(Silverstein & Tong 04) 

very small r      But long enough inflation itself is hardly possible. 
(Kobayashi, Mukohyama & Kinoshita 07) 

Racetrack inflation 

Axionic valley inflation or N-flation 

MSSM inflation 

The inflaton can be identified in MSSM w/ fine-tuned parameters. 

Higgsflation 

Chaotic inflation in supergravity with shift symmetry 
(Kawasaki, Yamaguchi & Yanagida 00) 

r ＝0.15 allows large variation of φ thanks to the shift symmetry 

r ＝0.003 detectable tensor perturbation even if variation in φ is small 

first realization of natural inflation in supergravity 

(Allahverdi, Enqvist, Garcia-Bellido & Mazumdar  06) 

r ～10-25 

inflation driven by a Kahler modulus w/ fine tuning of parameters 

(Blanco-Pillado, Burgess, Cline, Escoda, Gomez-Reino, Kallosh, Linde &Quevedo 04) 

KKLMMT model 

(Kaloper, Sorbo & JY 08) 

(Kallosh 07) 

r ～0.01 

r ～10-8 

(Kachuru, Kallosh, Linde, Maldacena, McAllister & Trivedi  03) Newer models of “stringy” inflation 

   Monodoromy model 

 

   Fibre inflation 

 

   Warped Wilsonline DBI inflation             

 

   etc 

r ＝0.03 

r ＝0.005 

r ～0.1 

(Silverstein & Westphal  08) 

(Cicoli, Burgers, & Quevedo  08) 

(Avgoustidis & Zavala  08) 



Inflation and Observations 



6 parameter fit 

of flat ΛCDM model 



Inflation (adiabatic) 

causal seed  
model 
(cosmic strings 
 textures etc) Isocurvature model 

WMAP observed negative correlation between temperature anisotropy 

and E-mode polarization which is predicted by super-Hubble adiabatic 

fluctuations produced during inflation. 



Spatial curvature 

01 tot

Amplitude and spectral index of curvature perturbation 

(7year WMAP+BAO+HST) 

Based on Markov-Chain-Monte-Carlo method 

Values of these parameter change depending 

on which parameters to fit and which dataset 

we use. 



6 parameter fit 

of flat ΛCDM model 
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Chaotic inflation 

φ 

V[φ] 

eff

MPl 

Slow-roll parameters 

Number of e-folds from           to the end of inflation N 

Amplitude of fluctuations 
2

2
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13 13 41.6 10 GeV,  8 10  for .
4

m

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The coupling between the inflaton and other fields must be small. 

310h 

2
56 10 GeV

8

h
m


  e.g. Yukawa coupling           , decay width 

@ 55N 
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Chaotic inflation 

φ 

V[φ] 

eff

MPl 

Slow-roll parameters 

Number of e-folds from           to the end of inflation N 

Spectral index and its scale dependence 

@ 55N 

42
1 0.964,     6.6 10 .
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s
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Tensor-to-scalar ratio 

16 0.15.Vr   Observable by Planck! 
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Inflation ends when                  at the field value 1H V  

Number of e-folds from           to the end of inflation N 
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Curvature perturbation 

I
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l Spectral index and its scale dependence 

Taking                           , the normalization gives                    . 55,   15N   147 10  

0.964

tiny 
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Spectral index and its scale dependence 
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(Dodelson, Kinney, Kolb 97) 



may also help distinguish models. 

Potential-driven slow-roll models 

NonGaussianity is small, because the inflaton is very weakly coupled  

with other fields as we have seen. 

k-inflation, G-inflation,… 

NonGaussianity can be large. 

Beyond the single-field inflation 



6 parameter fit 

of flat ΛCDM model 



3 ( )k P k



40 

Deviation around kd ≈ℓ≈40 

can be seen even in the 

binned C ℓ  but those at 

125 can not be seen there. 

 

(Nagata & JY 08) 

curvature  

perturbation 

d=1.3x104Mpc 

distance to the last 

scattering surface 



30 400kd  35 405kd 

In fact, if we change the wavenumber domain of decomposition slightly,  

we obtain a dip rather than an excess even for the band power analysis. 

3.3s peak 

3s dip 



Assume various shapes of modified power spectrum 

with three additional parameters in addition to the standard 

power-law. 

 

Perform Markov-Chain Monte Carlo analysis with CosmoMC 

with these three additional parameters in addition to the standard 

6 parameter ΛCDM model. 

( )P k



Transfer function shows that       depends on           with             .  

2
( )

2 1

X k



C ( )P k kd 

If we add some extra power on           

at                , it would modify 

all       ’s with                      . C 125kd 

( )P k

125kd 

kd

3 ( )k P k



Simply adding an extra power  

around                does not 

much improve the likelihood,  

because it modifies the  

successful fit of power-law  

model at smaller     ’s. 

125kd 



Consider power spectra which change      ’s only locally. C

kd

3( ) ( )A k k P k

v^ type 

W type 

S type 

Height, location, & width of the peak 

are 3 additional parameters. 

kd



        improves as much as 22 by introducing 3 additional parameters. 
2

eff

If χ2 improves by 2 or more, it is worth introducing a new  

parameter,  according to Akaike’s information criteria (AIC). 

(Ichiki, Nagata, JY, 08) 



Unlike our reconstruction methods, MCMC calculations use 

not only TT data but also TE data. 

2

eff due to improvement of TT fit = 

due to improvement of TE fit = 2

eff

It is intriguing that our modified spectra improve TE fit significantly  

even if we only used TT data in the beginning.  

12.5

8.5

TT(temp-temp) data and model               TE(temp-Epol) data and model 

 



Posterior probability to find vanishingly small deviation from a power-law. 

 

 

 

based on a local analysis in the range                . 20kd 

Posterior probability to find vanishingly small deviation from a power-law 

at any observed wavenumber domain. 

 

 

 

based on a global analysis in the range                        . 40 380kd 

This may or may not be so by chance. 

In either case, however,… 



Maximum of the difference from the power law 

Expected 

Errors by 

PLANCK 

The presence of such a fine structure changes the estimate of 

other cosmological parameters at an appreciable level by Planck.  



f

k-inflation & G inflation 

710 GeV RT 

Standard inflation 

Its spectrum can be used to probe post-inflationary thermal history  

of the early Universe. 

1w 

0w 

         between inflation 

and reheating 

         between inflation 

and reheating 

sensitivity curves of DECIGO 



The precision cosmology is entering a new era with even higher 

precision. 

 

Hopefully we will be able to know which if any is the correct 

inflation model that occurred in the early Universe. 




