基研研究会、8月1-3日

TGVR+MRMを用いた 第一原理4核子散乱

新潟大 青山茂義

新井(長岡高専), 鈴木(新潟大), P. Descouvemont (ULB), D. Baye (ULB)

submitted to Few-body systems

Coupling between d+d channel and 3N+N channels

Recombination of constituent particles

(Transfer reaction, Fusion reaction)

目的 A≧4核子系の核反応を、第一原理的に解く ことにより、テンソルカ等の核反応への影響 を調べる。

グローバルベクトル表現を用いた相関基底関 数法の拡張を行う。

(Single) global vector representation (GVR)

K. Varga, Y. Suzuki, and J. Usukura, FBS24(1998)81

Double global vector representation (DGVR)

Y. Suzuki, W. Horiuchi and W. Orabi, K. Arai, FBS42(2008)33

Triple global vector representation (TGVR)

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont and D. Baye, submitted to FBS

TGVRのメリット 1. 核反応への適用 2. 0⁻を含むunnatural parity stateの取り扱いが、可能

微視的 R行列理論 (MRM)

D. Baye, P. -H.Heenen, M. Libert-Heinemann, NPA291(1977).

K. Kanada, K. Kaneko, S. Saito, Y.C. Tang, NPA444(1985).

今回の内容

TGVRとMRMを組み合わせた第一原理4核子散乱の計算

(TGVRの最初の適用例)

ハミルトニアン(4体系の場合) $H = \sum_{i=1}^{4} T_i - T_{cm} + \sum_{i < j}^{4} V_{ij} + \sum_{i < j < k}^{4} V_{ijk},$

現実的核力: AV8' +Coulomb+3NF

 V_{ij} : Central+LS+Tensor+Coulomb

Pudliner, Pandharipande, Carlson, Pieper, Wiringa: PRC56(1997)1720

 V_{ijk} : Effective three nucleon force

Hiyama, Gibson, Kamimura, PRC 70(2003)031001

有劾相互作用: MN +Coulomb

 V_{ij} : Central+Coulomb

Thompson, LeMere, Tang, NPA(1977)286

LS結合表示で、行列要素を計算=> チャンネルスピン結合表示に変換

LS-coupled basis function $\mathcal{A}\left[\left[\psi_{L_{a}}^{(\text{space})}\psi_{L_{b}}^{(\text{space})}\right]_{L_{ab}}\chi_{\alpha}(\rho_{\alpha})\right]_{L}\left[\psi_{S_{a}}^{(\text{spin})}\psi_{S_{b}}^{(\text{spin})}\right]_{S}\right]_{JM}\psi_{T_{a}M_{T_{a}}}^{(\text{isospin})}\psi_{T_{b}M_{T_{b}}}^{(\text{isospin})}$

Three representative orbital angler momentum

$$\boldsymbol{U}_{H} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix} \qquad \boldsymbol{U}_{K} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1/2 & 1/2 & -1 & 0 \\ 1/3 & 1/3 & 1/3 & -1 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix} \qquad \boldsymbol{U}_{K} \boldsymbol{U}_{H}^{-1} = \begin{pmatrix} \boldsymbol{U}_{KH} & 0 \\ 0 & 1 \end{pmatrix}$$

H-type \Rightarrow K-type $x' = U_{KH} x$

基底関数のヤコビ座標の変換に対する関数型の保存

Unnatural parity 0⁻

$$F_{L_1L_2(L_{12})L_3LM}(u_1, u_2, u_3, A, x)$$

 $= \exp\left(-\frac{1}{2}\tilde{x}Ax\right) \begin{bmatrix} \left[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x) \right]_{L_{12}}\mathcal{Y}_{L_3}(\widetilde{u_3}x) \end{bmatrix}_{LM}$
Double global vector New extension
 $\mathcal{Y}_{L_iM_i}(\widetilde{u_i}x) = |\widetilde{u_i}x|^{L_i}Y_{L_iM_i}(\widehat{u_i}x)$ $\widetilde{u_i}x = \sum_{j=1}^{N-1} (u_i)_j x_j$
H型の場合 $\widetilde{u_1} = (1,0,0), \ \widetilde{u_2} = (0,1,0) \text{ and } \ \widetilde{u_3} = (0,0,1)$
K型も、同じ関数型

1

$$\exp\left(-\frac{1}{2}\widetilde{x'}A_{K}x'\right)\left[\left[\mathcal{Y}_{L_{1}}(x_{1}')\mathcal{Y}_{L_{2}}(x_{2}')\right]_{L_{12}}\mathcal{Y}_{L_{3}}(x_{3}')\right]_{LM}$$

$$x' = U_{KH}x \qquad \widetilde{u_{1}} = (1,0,0), \ \widetilde{u_{2}} = (0,-\frac{1}{2},1) \text{ and } \widetilde{u_{3}} = (0,\frac{2}{3},\frac{2}{3})$$

$$A = (u_{1}u_{2}u_{3})A_{K}\left(\begin{array}{c}\widetilde{u_{1}}\\\widetilde{u_{2}}\\\widetilde{u_{3}}\end{array}\right) = \widetilde{U_{KH}}A_{K}U_{KH}$$

F関数の座標の置換に対する関数型の保存

 $< F_{L_4L_5(L_{45})L_6L'}(u_4, u_5, u_6, A', x) | O | F_{L_1L_2(L_{12})L_3L}(u_1, u_2, u_3, A, x) >$

submitted to Few-body system

A≧4以上の行列要素を統一的に表現できる

微視的R行列理論

全てのpseudo states (離散化固有値)を取り入れる。

$$\Psi^{(H-type)} = \mathbf{A}\{\boldsymbol{\Phi}_{\mathbf{I}_1}^{2N}(\boldsymbol{x}_1, \boldsymbol{x}_2) \, \boldsymbol{\Phi}_{\mathbf{I}_2}^{2N} \boldsymbol{\chi}_{\boldsymbol{l}}(\boldsymbol{x}_3)\}$$

$$\Psi^{(K-type)} = A\{ \Phi^{3N}_{I'_1}(x'_1, x'_2) \Phi^{N}_{I'_2} \chi_{l'}(x'_3) \}$$

 $\chi_l(x_3)$:相対波動関数 (expanded by Gaussian basis functions) <u>微視的 R行列理論</u>

$$a: channel raidus(~15fm)$$

 $x_3 < a --- ガウス基底展開法$
 $x_3 > a --- Coulomb 関数$
(or Witteker 関数)

e.g. D. Baye, P. -H.Heenen, M. Libert-Heinemann, NPA291(1977).

⁴Heの散乱状態でのPhysical channels

Table 1. Channel spins $\binom{2I+1}{\ell_J}$ of physical d+d, t+p, and h+n channels for $J \leq 2$ and $\ell \leq 2$.

J^{π} channel	0+	1+	2^{+}	0-	1-	2^{-}
$d(1^+) + d(1^+)$	${}^{1}S_{0}$ ${}^{5}D_{0}$	${}^{5}D_{1}$	${}^{5}S_{2}$ ${}^{1}D_{2}$ ${}^{5}D_{2}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$
$t(\frac{1}{2}^+) + p(\frac{1}{2}^+), \ h(\frac{1}{2}^+) + n(\frac{1}{2}^+)$	${}^{1}S_{0}$	${}^{3}S_{1}$ ${}^{3}D_{1}$	${}^{1}D_{2}$ ${}^{3}D_{2}$	${}^{3}P_{0}$	${}^{1}P_{1}$ ${}^{3}P_{1}$	${}^{3}P_{2}$

散乱の記述において、重要な状態(遠方で束縛した クラスターの境界条件を持っている)。

相互作用領域でのクラスターの歪みを考えると 完全ではない。 Pseudo State を入れる。

SVMで得られたサブシステムの性質

-	literature			present			cluster	potential	
	P_D	$R^{\rm rms}$	E	P_D	$R^{\rm rms}$	E	N_k		
	(%)	(fm)	(MeV)	(%)	(fm)	(MeV)			
-	5.8	1.96	-2.24	5.9	1.79	-2.18	8	$d(1^+)$	
	-	-	-8.41	8.4	1.69	-8.22	30	$t(\frac{1}{2}^{+})$	AV8'
−Hiyama	-	-	-7.74	8.3	1.71	-7.55	30	$h(\frac{1}{2}^{+})$	(with TNF)
	14.1	-	-28.44	13.8	1.46	-27.99	(2370)	$^{4}\text{He}(0^{+})$	
- 	0	1.95	-2.20	0	1.63	-2.10	4	$d(1^{+})$	
Horiuchi	0	1.71	-8.38	0	1.70	-8.38	15	$t(\frac{1}{2}^{+})$	MN
	0	1.74	-7.71	0	1.72	-7.70	15	$h(\frac{1}{2}^{+})$	
	0	1.41	-29.94	0	1.41	-29.94	(1140)	$^{4}\text{He}(0^{+})$	
-									

present

計算と実験の2体崩壊の敷居値の位置

Included channels in the present calculation

model			channel		
	2N+2N	Ι	$d(1^+)+d(1^+)$		
			$d(1^+)+d^*(1^+)$		
			$d^{*}(1^{+})+d^{*}(1^{+})$		
		II	$\bar{d}(0^+) + \bar{d}(0^+)$		
			$\bar{d}(0^+) + d^*(0^+)$		
			$d^{*}(0^{+}) + d^{*}(0^{+})$		
		III	$d^{*}(2^{+})+d^{*}(1^{+})$		
			$d^{*}(2^{+})+d^{*}(2^{+})$		
		IV	$d^{*}(3^{+})+d^{*}(1^{+})$		
FULL			$d^{*}(3^{+}) + d^{*}(2^{+})$		
			$d^{*}(3^{+})+d^{*}(3^{+})$		
		V	$2n(0^+)+2p(0^+)$		
			$2n(0^+)+2p^*(0^+)$		
			$2n^{*}(0^{+})+2p(0^{+})$		
			$2n^{*}(0^{+})+2p^{*}(0^{+})$		
	3N+N	1	$t(\frac{1}{2}^+) + p(\frac{1}{2}^+)$		
			$t^*(\frac{1}{2}^+) + p(\frac{1}{2}^+)$		
		2	$h(\frac{1}{2}^+) + n(\frac{1}{2}^+)$		
			$h^*(\frac{1}{2}^+) + n(\frac{1}{2}^+)$		

Thanks to the reduction of basis function by SVM for the sub-system. We can reduce the dimension of matrix elements very much!

Dimensions of matrix elements for FULL in the LS-coupled case

0+ 6660 1+ 16680 2+ 22230 0- 4200 1- 11670 2- 12480

For 2+, it takes about 200 days with 1CPU(1Core). And we need about 20Gbyte memory for the MRM calculation.

All pseudo states (discretized continuum state) are employed in the MRM calculation.

PC-cluster system

Core i7 (4core) ×12node=48 core

¹S₀ d+d elastic phase shift within d+d channel

¹S₀ d+d elastic phase shift (0+)

For effective interaction, d+d scattering picture is good!

R.-Matrix analyses : Hofmann, Hale, PRC77(2008)044002

Energy Levels of 0⁺ state in ⁴He

¹S₀ t+p elastic phase shift (0+)

For effective interaction, t+p scattering picture is good!

More elaborate interaction (AV18) case by Hofmann

Hofmann, Hale, PRC77(2008)044002

FIG. 1. (Color online) Low-energy triton-proton 0^+ phase shifts calculated using AV18 (av), AV18 and UIX (au), and additionally V_3^* (auv) compared with *R*-matrix (Rmat) results.

¹D₂ elastic phase shift (2+)

Phase shift with Realistic interaction is not different so much from effective interaction for ${}^{1}D_{2}$

Other elastic phase shifts in 2+

phase shifts in 1+

³P₀ elastic phase shift (0-)

³P₂ elastic phase shift (2-)

 ${}^{3}P_{1}$ elastic phase shift (1-)

Energy levels for negative parity states

Effective interaction (MN) gives same phase shift for 0-.1-.2- !

まとめ

現実的相互作用 (AV8'+3NF)と有効相互作用を用いた TGVR+MRMにより、4Heの弾性散乱のPhaseShift計 算を行った

 ${}^{1}S_{0}$ におけるduetronクラスターの歪みは、非常に大きい。 (相互作用領域では、3N+N成分も無視できない。)

負パリティ状態では、現実的核力の場合は、³P」のエネルギー分離は、非常に大きいが、有効相互作用では、分離はない。

次課題

- 1.5核子散乱
- 2.4核子散乱で、より精密な相互作用を検討