On the angular distribution of intermediate-energy heavy-ion reactions based on a simple model

理研仁科センター 堂園昌伯

共同研究者 上坂友洋(理研)、市村宗武(理研)

導入

- SHARAQ spectrometer
 - 中間エネルギー(~数百MeV)重イオン(HI)反応測定用の高分解能スペクトロメータ
 - 運動量分解能 p/δp ~ 15000
 - 角度分解能 $\delta \theta$ ~ 1mrad
- SHARAQで目指している物理
 - HI反応(特にMutual Excitation含む)
 が持つ励起モードの選択性
 を活かした新しい励起モードの研究
 - (10C,10B(IAS)) $0^+ \rightarrow 0^+$ \Rightarrow IVMR ($\Delta T=1, \Delta S=0$)
 - (16O,16F) $0^+ \rightarrow 0^-$
 - ⇒ Collective 0- state

Spectroscopy with High-resoluation Analyzer and RadioActive Quantum beams

パリティ移行核反応 (16O,16F)

- パリティ移行核反応 (16O,16F)
 - $^{16}O(g.s.,0^{+}) \rightarrow ^{16}F(g.s.,0^{-})$
 - 0 状態を探るのに適切なプローブ
 - ⇒ パイ中間子相関
- 特徴
 - Spin-longitunalな遷移 (σ・q) (σ・q)
 - Unnatural-parity状態を選択的に励起
 - 各△Lに対して1つのJ^πを励起
 - ・ 角度分布からJ^πを同定可能
 - → 0-状態のクリアな測定が可能

	ΔL=0	ΔL=1	ΔL=2	•••
Parity-trans.	0-]+	2-	•••
従来の反応 (p,n),(d, ² He)等	0+, 1+	<mark>0</mark> -, 1-, 2-	1+, 2+, 3+	•••

(16O,16F)反応の角度分布

• DWBA計算結果

- O⁻(∆L_R=0):前方ピーク
- 1+(ΔL_R=1): θ~0.3°にピーク
- 2-(ΔL_R=2): θ~0.5°にピーク

角度分布は ΔL_R で 決まっているように見える

(16O,16F)反応の角度分布

• DWBA計算結果

- O⁻(ΔL_R=O):前方ピーク
- 1+ (ΔL_R=1): θ~0.3°にピーク
- 2-(ΔL_R=2): θ~0.5°にピーク

角度分布は ΔL_R で 決まっているように見える

O-は Δ L_R=0 だから前方ピーク? ⇒ 間違い

- 「ΔLR <=> 角度分布」は適用されない
 - 今回のMutual excitationの場合、
 projectileのtransition densityが ΔL_{a=}1を含む (0+ → 0-なので)
 - 「ΔL_R <=> 角度分布」が成り立つのは ΔL_a=0の場合のみ
- では、なぜ0-は前方ピークなのか?

研究の目的

• 背景

- SHARAQスペクトロメータの完成により、 中間エネルギー重イオン反応の高分解能測定が可能に
- 中間エネルギー重イオン反応(特にMutual excitationを含む)を 原子核のspectroscopy toolとして確立したい

目的

- 中間エネルギー重イオン反応の反応機構を明らかにしたい
 - 何が本質的か?
- (反応機構が単純な場合)簡単なモデルで直感的に理解したい

今回

- ¹²C(¹⁶O, ¹⁶F)¹²B at 200A MeVのDWBA計算を例に議論していく
 - Mutual excitationの場合の角度分布
 - 吸収の効果(Damping factor)

解析方法 DWBA計算コード FOLD/DWHI

- 反応: 12C(16O,16F)12B at 200A MeV
- 計算の概要

Cohen-Kurath(positive parity)

Woods-Saxon pot. Millener-Kurath(negative parity)

遷移密度 $\rho_{LSJ} = \sum_{np} \langle b||[a_n^{\dagger} a_p]||a\rangle [\phi_p^* \phi_n]$

形状因子(2重畳込みモデル)

$$F_{\beta\alpha}(R) = \int d\xi_a d\xi_A \rho_{ab}(\xi_a) V^{\tau}(R, \xi_a, \xi_A) \rho_{AB}(\xi_A)$$

OMP determined from ¹²C+¹²C at 200A MeV

光学ポテンシャル χ_a, χ_b

U(R)=V(R)+iW(R)(Woods-Saxon form)

 V_0 = -18.5 MeV, r_R = 1.0 fm, a_R = 0.75 fm W_0 = -100.7 MeV, r_I = 0.602 fm, a_I = 0.819 fm

$$T_{\beta\alpha} = <\chi_{\beta}^{(-)}|F_{\beta\alpha}|\chi_{\alpha}^{(+)}>$$

断面積

$$\frac{d\sigma}{d\Omega} = \frac{\mu_a \mu_b}{(2\pi\hbar^2)^2} \frac{k_f}{k_i} |T_{\alpha\beta}|^2$$

PWBA計算結果

• PWBAではRの積分がanalyticに可能

$$T^{\mathrm{PWBA}} \propto F_{\Delta L_a}^{ba}(q) F_{\Delta L_A}^{BA}(q)$$

- ¹²B(0-)
 - $0^+ + 0^+ \to 0^- + 0^-$ ($\Delta L_a = 1$, $\Delta L_A = 1$, $\Delta L_R = 0$) $T^{\mathrm{PWBA}} \propto F_{\Delta L_a = 1}^{ba}(q) F_{\Delta L_A = 1}^{BA}(q)$
 - q ~ 0.5 fm⁻¹で第一ピーク
- ¹²B(1+)
 - $0^+ + 0^+ \to 0^- + 1^+$ ($\Delta L_a = 1$, $\Delta L_A = 0$, $\Delta L_R = 1$) $T^{\mathrm{PWBA}} \propto F_{\Delta L_a = 1}^{ba}(q) F_{\Delta L_A = 0}^{BA}(q)$
 - θ~ 0.2 fm⁻¹で第一ピーク
 (0-より前方なのはΔL_A=0だから)

 $\Delta L_R \Leftrightarrow$ 角度分布ではない! $\Delta L_a, \Delta L_A$ で角度分布が決まる \Rightarrow DWBA計算で0-が前方ピーク の原因はDistortion ?

DWBA計算結果

PWBA
w/ Coulomb
w/ Coulomb + Real
w/ Coulomb + Real + Imag.

- ¹²B(0-)
 - Coulomb ⇒ 0°付近がうまる
 - Real ⇒ PWBAとほぼ同じ結果
 - Imag.
 - ⇒ 断面積が小さくなる、 角度分布が変わり前方ピークとなる
- ¹²B(1+)
 - Coulomb ⇒ 断面積が小さくなる
 - Real ⇒ PWBAとほぼ同じ結果
 - Imag.
 - ⇒ 断面積が小さくなる、 角度分布はあまり変わらない
- ・中間エネルギー重イオン反応では、Real partの 寄与は小さくImaginary part(吸収)が重要!
- ・吸収の効果が0-と1+で異なる

section (mb/sr)

Cross

なぜ0-と1+で吸収の効果が異なるのか?

中まで寄与していて符号が違う ⇒ 吸収により角度分布が変わる?

そもそも中の寄与がない ⇒ 吸収による効果が小さい?

実際にl=kb(rに対応)の分布をみてみる

吸収の効果 ¹²C(¹⁶O, ¹⁶F)¹²B(0-) at 200MeV

$$\frac{d\sigma}{d\Omega} = K \sum_{m} |\sum_{l} \beta_{lm} P_l^m(\theta)|^2 \qquad \text{Damping factor } D \equiv 1 - |\beta_{\mathrm{DW}}| / |\beta_{\mathrm{PW}}|$$

- 2つの成分(Real partがノードを持つため)
- 吸収により第一成分の寄与が小さくなり、角度分布が変わる

吸収の効果 ¹²C(¹⁶O, ¹⁶F)¹²B(0-) at 200MeV

$$\frac{d\sigma}{d\Omega} = K \sum_{m} |\sum_{l} \beta_{lm} P_l^m(\theta)|^2 \qquad \text{Damping factor } D \equiv 1 - |\beta_{\mathrm{DW}}| / |\beta_{\mathrm{PW}}|$$

- 2つの成分(Real partがノードを持つため)
- 吸収により第一成分の寄与が小さくなり、角度分布が変わる

吸収の効果 ¹²C(¹⁶O, ¹⁶F) ¹²B(1+) at 200MeV

$$\frac{d\sigma}{d\Omega} = K \sum_{m} |\sum_{l} \beta_{lm} P_l^m(\theta)|^2 \qquad \text{Damping factor } D \equiv 1 - |\beta_{\mathrm{DW}}| / |\beta_{\mathrm{PW}}|$$

- 1つの成分
- 吸収により低角運動量成分がけずれ、断面積が小さくなる

吸収の効果 ¹²C(¹⁶O, ¹⁶F) ¹²B(1+) at 200MeV

$$\frac{d\sigma}{d\Omega} = K \sum_{m} |\sum_{l} \beta_{lm} P_l^m(\theta)|^2 \qquad \text{Damping factor } D \equiv 1 - |\beta_{\mathrm{DW}}| / |\beta_{\mathrm{PW}}|$$

- 1つの成分
- 吸収により低角運動量成分がけずれ、断面積が小さくなる

遷移の詳細(J^π,configuration)によらず、Damping factorはよく一致

• Eikonal近似(Distorted waveに対する) Y. Suzuki, RIBF lecture note

$$D^{\text{Eikonal}}(b) = \exp\left[\frac{1}{\hbar v} \int_{-\infty}^{+\infty} W(\sqrt{b^2 + z^2}) dz\right]$$

前方角度散乱、 |q|/|k|<<1なので直線で近似

$$v = \frac{\hbar k}{\mu}, \quad b^2 = x^2 + y^2$$

• WKB近似(部分波に対する) Gotz et al., Phys. Rep. 16 (1975) 115.

$$D^{\text{WKB}}(l) = \exp\left[2\int_{R_l}^{\infty} \frac{\mu W(r)}{\hbar^2 k_l(r)} dr\right]$$

Local momentum ki

$$k_l(r) = \sqrt{k^2 - \frac{(l+1/2)^2}{r^2} - \frac{2\mu}{\hbar^2}V(r)}$$

Classical turning point R

$$k_l(R_l) = 0$$

Damping factor Dについて

- DDWBAをDEikonal、DWKBと比較
 - WKBについてはkb=l+1/2でlに変換

$$^{12}\text{C}(^{16}\text{O},^{16}\text{F})^{12}\text{B}(0^{-})$$
 at $200A\text{MeV}$

 $V_0 = -18.5 \text{ MeV}, r_R = 1.0 \text{ fm}, a_R = 0.75 \text{ fm}$ $W_0 = -100.7 \text{ MeV}, r_I = 0.602 \text{ fm}, a_I = 0.819 \text{ fm}$

DWBAから求めたDistortion factorはEikonal, WKBでよく再現される

Damping factorを導入したsimple model

- Damping factor D
 - 遷移の詳細(J^π, configuration)によらない
 - Eikonal, WKBの結果とも一致(計算にもよらない)
- Damping factorを導入した簡単なモデルを構築できないか?

$$T=\int k^2 dk \ v(k) F_p(k) F_t(k) ilde{D}(k,q)$$
 相互作用 遷移密度 歪曲波

- ・Eikonal, WKBから求めたD
- ・現象論的なD

まとめ

• DWBA計算結果

- 光学ポテンシャルのReal partの寄与(coulomb含む)は小さい
 - 入射エネルギー~3GeVに対し、V~数十MeV
- Imaginary partの影響が大きい
 - 吸収の効果が支配的
 - O-の角度分布を理解するためには吸収の効果が本質的

Damping factor D

- 遷移の詳細(J^π, configuration)によらない
- Eikonal, WKBと比較した結果、よく再現された
- Future work: Damping factorを導入した簡単なモデル
 - Eikonal, WKBのDamping factorを用いた計算
 - 現象論的なDamping factorを用いた計算

Damping factor 深さWの依存性

Damping factor 距離rの依存性

Damping factor diffuseness aの依存性

計算の概要

Cohen-Kurath(positive parity)

Woods-Saxon pot.

Millener-Kurath (negative parity)

Franey-Love t-matrix at 210MeV

遷移密度

$$\rho_{LSJ} = \sum_{np} \langle b || [a_n^{\dagger} a_p] || a \rangle [\phi_p^* \phi_n]$$

有効相互作用

$$V^{(\tau)} = (V_{\tau} + V_{\sigma\tau} \boldsymbol{\sigma}_{a} \cdot \boldsymbol{\sigma}_{A} + V_{T\tau} S_{12}) \boldsymbol{\tau}_{a} \cdot \boldsymbol{\tau}_{A}$$

$$F_{\beta\alpha}(R) = \int d\xi_a d\xi_A \rho_{ab}(\xi_a) V^{\tau}(R, \xi_a, \xi_A) \rho_{AB}(\xi_A)$$

OMP determined from ¹²C+¹²C at 200A MeV

光学ポテンシャル χ_a, χ_b

$$T_{\beta\alpha} = \langle \chi_{\beta}^{(-)} | F_{\beta\alpha} | \chi_{\alpha}^{(+)} \rangle$$

断面積

$$\frac{d\sigma}{d\Omega} = \frac{\mu_a \mu_b}{(2\pi\hbar^2)^2} \frac{k_f}{k_i} |T_{\alpha\beta}|^2$$