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[Foreword]

“Microscopic theory of nuclear reactions”, the theme of
this meeting, is based on

reaction mechanisms
studies of {
NN effective interaction

This talk is a review of some turning points in the study

of nuclear reaction mechanisms, in particular basic ideas and
developments of phenomenological models of multi-step direct
reactions of light ions.

[Experimental discoveries and theoretical models]
symbols : = original Model, > development, * Basic pictures
® Atomic nucleus (1901~1911)

® Neutron (nn) (1932)

® Resonance and large gamma emission probability in
low energy neutron induced reactions (1934~5)
= Compound Nucleus (CN) model (Bohr, Breit-Wigner, 1936)

* Strong correlation 2 Liquid drop model



® Non-CN process at ~100MeV/N (1940s)
= Serber’s Direct Reaction (DR) model (Serber, 1947)

*

Weak NN correlation in short time -2 Impulse App.

® Low energy DR leading to discrete final nuclear states.
= Deuteron stripping model (Butler, 1951)
*Shell model 2 Spectroscopic applications

® (Gross structure 1n neutron total cross sections vs A and E
at 0~3MeV (Barshall, 1952)

= Optical Model (Feshbach- Porter - Weisskopf , 1954)

* Energy average = observation by wave packet

® Intermediate resonance in energy averaged cross section
(e.g. Giant Resonance, Isobaric analog resonance)
= Theory of pre-equilibrium process through
Doorway, Hallway etc. states (Block-Feshbach, 1963)
* Size of energy average interval = time interval of observation
® Heavy Ion reactions at low energy

= Semi-classical models
= QMD & AMD simulations

® Heavy Ion reactions at high and ultra-high energies
= VVU egs. Quark-Gluon plasma



[Developments of reaction theories]

$ Compound Nucleus (CN) model

* Breit-Wigner formula,

* Dispersion formula of S-matrix : Decaying state, R —matrix,

S- matrix pole
* Resonance state as a black-box with only a few strings,
1.e. resonance energy and total and partial widths.

- Statistical CN models :

— Hauser-Feshbach formula fror transition to discrete states
— Evaporation model (concept of ‘temperature’) for transition
to continuous states, in particular multi-particle emission

* Models for pre-equilibrium process :

= Semi-classical models , Exciton model etc.

= Quantum theories of multi-step processes
(FKK, TU, NWY, SCDW)

$ Models of DR at intermediate energies

 Optical model for A-dependence of neutron total cross sections
- Strippig and pick up model of (d, n) and (n, d) reactions

- Intra-Nuclear Cascade model (INC)
— Monte Carlo calculations
+ Impulse approximation
— Multiple scattering theory > Theories of Effective NN
interaction in nuclear medium - in progress.



$ Models of DR at low energies

+ Optical model for energy averaged elastic scattering, total and
total reaction cross sections and polarizations
= Optical potential (OP) search by analysis of exp. data
— Theoretical derivation of optical model
— Microscopic calculation of OP - in progress

$$ One-step DR

- DWBA for Inelastic scattering & re-arrangement reactions
- Spectroscopic applications - in progress

* Diffraction model for scattering of strongly absorbed projectile

« DWIA for inelastic & charge exchange scattering

— Theories of effective NN interaction = in progress

$$ Multi-step DR (MSDR)

- Method of Coupled Channels (CC)
= CC for collective excitations
= CRC (Coupled Rearrangement Channels)
for rearrangement reactions

= CDCC (Continuum Discretised CC)

for real or virtual break up process.
— 2nd order DWBA for rearrangement reactions
= Resonating Group Method (RGM))
= Glauber model



[Method of Coupled Channels (CC)]

The most general phenomenological DW theory of DR, first
introduced to nuclear physics by S. Yoshida (1956)

$ Early references:
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S. Yshida , Proc.. Phys. Soc. 69A, 668 (1956)
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T. Tamura, Rev. Mod. Phys, 37, 679, (1965)
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J.A. Wheeler, Phys.Rev., 52, 1083, 1107 (1937) (RGM)
G.H.Rawitscher, Phys. Lett, 21, 444 (1966), Phys. Rev. 163,
1223 (1967)
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ibid 44, 1212 (70)

R.J.Ascuitto, N.K.Glendening,B.Sorensen,

Nucl. Phys.A, 170, 65(1971)

T. Udagawa, H.H.Wolter, W.W. Coker, PRL, 31, 1507(1973)

(83) CDCC : Continuum Discretised Coupled Channels

M.Kamimura, M. Yahiro, Y. Iseri, Y. sakuragi, M. Kawai,
Prog.Theor. Phys. Suppl. 89, (1986)

N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.Rasitxcher,
M.Yahiro, Phys. Rep. 154, 126 (1987)
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[Formalism of CC]

$ Model space,
* spanned by the internal w.fs. of strongly coupled channels :

{®0,, c=a(nitial), B(final), y,,7,,--7y (intermediate) }

C

+ Effective Hamiltonian in p: H(P)

its energy average over interval I : < H(P) >,

$ Phenomenological substitute : <HP)>, = H

- Formof H inchannel ¢: H© = h +T. +V

where i, ®_=¢. @, , T, = K.E. of relative motion,

c ?

V. = interaction. With channel diagonal bear potential’, U,

~

and non-diagonal ‘residual interaction’, V. ,

c

HO = h +T, +U,+7V,

. cC
$ CC w.f: P = za®a+§ 2,0+ 7,0,

- Y satisfies <®, |E-H|¥P“>=0 which leads to

(Ec _Tc —UC)ZC = ZUcmZm

m#c

with ‘channel coupling potential’,

UcmE<ch|(I:I_E)|CDm>



* Coupled intergal equations under scattering B.C.:

1= 6,0+GYU,) p,@,+ GV YU, 1.,

m#*c

with G =(E, +ie-T,-U,)" .

Solution for W

lPCC = 500( (1+Gc(+)Uc)§0aq)a+ ZGC(+) zUcm zm(ﬂ

m¥*c

$ Iterative solution and T - matrix

T

— 70 (1 (2) o o e
Pa Tﬂ’a + Tﬂa + Tﬂ’a +

$$ 0-th order: 1D a O =5, (1+GOU,) @@,

c

0) _— 0
Tie = 85, <@ |U | 1>
$$ I1storder: for S+«
D) = (+) (0)(+)
Xp = Gﬂ Uﬂa Ao

T = <00y, | 7995 = 72 ¢ DWBA
with the distorting potentials

29and 700 =(14G)g,0, where G =G4

$$ 2nd order for f-a:

2 — 0
289= G T UpG Uy 2
m#a, 3
2) — 0)(— 0 _ 2
T = % <O UG U, | 20 >= 8 T

a mo
m#a,f m#of p



with T/§j3a= <29 NULGCYU,, | x> € 2nd order DWBA

$$ Coupling potential U, =<®, |(H-E)|D, >
- Two choices of U, , with ' or H"™
For d =c or m, U = <o, |(HY -E)|®,, >
= <® |(T,+U,+V,+h, —E)|®, >

= <@ |V, |P,> + <P |P,>(E,~T,~U,)

Interaction term  Non-orthogonality (NO) term

NO term #0 inrearrangement reaction '~ <®_ |®, >#0

$$ Two different forms of DWBA:

DWBA _ 0)(— 0 B oY) LA o
« T (post) = < PO IUL |y O0 > = < PO P | 700 >

1 . —_ 0)(— 0 —_ 0)(— 2 0
T (prior) = <700 U | 700 5 = < 00| | 06 5,

NO terms do not contribute since.

(E,-T,-U)x,"" =(E,~T,-U)*y"" =0
+ T}, (post) is used for stripping, 7§, (prior) for pick up
- If U9 =Uul >

T4, (post) = T (prior), “prior—post identity”

$$ Four different forms of 2nd order DWBA, T ﬁ(i) = Y r®

mzoff fma



For each of the potentials U,, and U,, in T ;}fn)a , there are prior

and post forms, hence altogether four forms. For each step of
the transition the one that matches the corresponding DWBA
form factor is: prior form for pick up, and post form for
Stripping.

$$ Examples of application of 2rd order DWBA
- Example (1) :  (CHe,a)(a,t) in A(C He,t)B*
() AC+nm)+h > @)C+ah+n) > (B)B(C+p)+t

1ststep (o) >(y) pickup >  prior form Uy
2rd step (y) — (B) stripping > post form U
T2 = <90 @, |V, |, >GP <@, |V, | D, > V0 >

No NO terms “ (T, +U, —E, ) y"" =0, (T, +U, *~E) y "7 =0

* M. Toyama, Phys. Lett. 38B, 147 (1972),
R.Schaeffer & Bertsch ibid, 159,(1972)

$ $ Example (2) : Successive transfer, (p,d*)(d*,t) in A(p,t)B

d *=the ground and excited states of the p-n system
(@) ABB+2n)+p — (y)C(B+n)+d*(p+n)—(f)B+t(p*2n)
+ Choice of the coupling potentials:

1ststep (a) > (y) pickup prior form Uy
2nd step (y) — (B) pickup  prior form U}
* Ty = Ty (prior - prior) + 7}%3, (prior - prior)

Tys, (prior - prior) = < ®, |V*|CDd*>G§I)<CDd*|V Iq)p}((+)>»



7,05 riorprior) = <707 <@, |04 >< Dy |V, | @, > 7 >
- If {® .} were a complete set ,
> T.)° (prior-prior) = —< z " O <@, |V, | D, > x>
d*
= —Tg"*(prior) v |0, ><d, | =1,
v

Reduction of 1-step contribution is anticipated even though E
Examples of one—step and successive transfer processes

in (p,t) reaction

(1) (p,t) on **Ca (2)(p,t) on '"*Snin BCS state

—_— 16 g (p.h)



(3) contribution of break up p-d*-t processes

T Pb(p,t)” Pb(07) T Pb(p.YTPB(3T)

)
5, - Totm,
AW T,
e -
v 1.8
Mhe s B IPLTT Y
e {3
1.0 A
1= | [
Y, = r..rf L vz
L =R U
T TS T o
SO ——
‘ n1-r|:|l:t o [ —ar hu-gu-—-a (1
,_1., M.lgarashi, K_Kubo, K_Yagi. Phys. Rep 188, Mo 1(18581)

Energy dep. of 1- and 2-step cross sections

DWBA and NO cross sectios
1 § —
'.I._
Tokal rimeorths
E LS 1 f
E ﬂ Orse-5150
LN P
AR Y RN = — bt
- m-simg
& !'JI & a
- wrupan 1 | i b A A
f -y | 2 SR ! 1% Ty
] i H I H
By RG] %-:-—J-v iy
- Y b |
® .
b = b1 L'
r ¥ n‘- | b1 7 ﬂh‘._ L ! :I LY} |
I - we g . . |
| o i IBE |
= | | | :
f ke i e S R .
i R EREEEEEE OEFTCEIL
oy 1 | HCH, g L
£t £ A o i el walerm) e o e e icgm i oere (o onetep o B0 B TU0U TR sk
i



Dominance of successive transfer processes in

(*0,'°0) on **Moat E,, =60MeV

E il '.';'_'-'g:?':x:-_ r o fal -run..u..:- = r A
i o ol
F =5 i E. = Sl F 1y k! il T g
il [ PREENELCR, et
o i i
¥ SN . h
. T il AR
e 1 " M ;
£ g b af I b S ] R
3 AN I | % | 1 k] | F* L - 1
+ fe % # [
i i
- () -
4 P ] [ ) P, II|||
- | ; -
I ey 1 4
1 . | | ] [}
'- I ! ! £ b s
E i
i Il ' \
i 'l
il-: 1 1 i a5
i | F 1 !
L " = v %
L n B
i F 1
%, ¥ I B
—_— ] bl 4 | 1 : .
L—A— i L .
13 = ) - r 5 " = ——
Bm L7 - 3
“nror Mo Moo wr iy, = 55, 60 Thand TIMEN Lbeclufe SiiFerential 2 pes-s oo Henn oF simaliaes s
rorefer nswding non=aitheeambng | alons, ard of the nmuoliaae s phis The eeor e procoe are o

U. Gosatz, M. Ichimura, R. A. Broglia, Phys. Rep. 18C, Mo. 3

$ Channel coupling potential for composite projectile channels

$$ Projectile break up

* cla+b)+A < c*(a+b)+ A4 : ¢* =break up state of ¢
for WhiCh (Dcz ¢c ¢A ’ (Dc*z ¢c* ¢A ’ Z:ZA—'_Z)A

U(C) = <¢c |UaA + UbA |¢c* >_

cc*

where U= <¢, |V, 1¢,> , U, =<¢, 1V, 16,>"

<OV |0 >=<g P, |V + TV, -U. | $ug,>



$ $ One particle transfer:

. alb+x)+ A< b+ B(A4+x)
forwhich ® =¢¢, , @, = g0, 5 V,=V  +V,
¢ Uc(zg) = <q)a|l7bx|q)b> + <(Da|l7bA_Ub|(Db>

S UD = <@, |V, |®,>= <D, |V, +7,, U, |®, >,

% Usually, <@, |V,, -U,|®, > is neglected. since

<O |V =Uy [ ©y > =<, [{< B | Vyu |6y > Uy} <9y |85 > 8, >
and <¢,|V,,|4,>-U, is presumably small unless A is too

small. *

$$ Problem of energy dependence of V, .

Effective potentials used in microscopic calculations depend on
the energy of relative motion of the individual constituents of the

()

cc*

composite particles. For instance, ¥, in U!) depends on the

energy of relative motion of aand 4, E_,. But E_, is notunique

because of the internal motion of ¢ in c¢. Conventionally, it is

fixed at E,,= E./2.for all states of d*. As th figure below shows,

this is entirely unjustifiable, in particular for the d* at high
excitation energies. Energy independent effective interaction will
be very useful.



E, distribution Eq= 56 MeV
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Y. Iseri, private communication

[Some future subjects of
Microscopic Theory of Nuclear Reactions (MST)]

Discovery and elucidation of new reaction mechanisms are
the purpose of nuclear reaction studies in general and precise
microscopic description thereof is the aim of MST in particular.
For further developments of MST as a precision theory, still more
refinements of the theory and its application to wider range of
actual reactions are necessary.. Examples of such refinement are
those concerning the effective NN interaction in nuclear medium,
7, which is one of the most important ingredients of MTS. At
present the G-matrix is most widely used for 7. Question then is
if G-matrix is the best for it. For example, are different theories
developed in nuclear structure theory not useful for MTS? Is the
local density nuclear matter approximation justifiable for 7 in
finite nuclei? If G-matrix is used, refinements such as exact
calculation of Pauli operator®, effects of relativity and coupling to



A - resonance etc. need be pursued. In the actual applications of
MST to the Distorted Wave theory of direct reactions, it should be
able to describe not only optical potentials, but also distorting
potentials including non-diagonal matrix elements with respect to
channels.

Besides the effective interaction 7 discussed above there are
and will be many interesting subjects of investigation for MST.

* K.Suzuki, R.Okamoto, M.Kohno and S.Nagata, Nucl. Phys. A665 92 (2000)



