Microscopic reaction theory on reactions of unstable nuclei

Collaborators

Kyushu Dental Coll. Kohno

Contents

1. Introduction

- 1.1 Effective model in hadron physics
- 1.2 Effective model in nuclear physics
- 2. Microscopic reaction theory
 - 2.1 Improved Glauber model
 - 2.2 Double folding model
 - 2.3 Cluster folding model
- 3. Eikonal Reaction Theory
- 4. Summary

1. Introduction

Hegelian dialectic

Elementary particles Fundamental interactions

Nucleus

炭素(C)

What is the synthesis?

Effective theory

Effective model

More is different! (Antithesis)

Reductionism (Thesis) P.W. Anderson, Science 177, 393-396, 1972.

Hadron physics and Nuclear physics

Hadron physics: Effective theory(CPT) Effective model(NJL,PNJL)

Nuclear physics: Effective theory(CPT) Effective model

QCD phase diagram

Prediction of PNJL model

Sakai, Sasaki, Kouno and Yahiro, arXiv:1104.2394 [hep-ph]

Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys.Rev.D82:096007,2010.

1.1 Effective model in hadron physics

QCD Phase diagram

Sakai, Kashiwa, Kouno, Matsuzaki, Yahiro P. R. D 77, 051901 (2008);D78:036001(2008);D78:076007(2008)

How to construct an effective model?

Roberger-Weiss periodicity

Nucl. Phys. B275, 734 (1986)

 $\mu = iT\theta$ $Z(\theta) = Z(\theta + 2\pi/3)$

色空間 Color space Extended Z₃ Symmetry

Sakai, Kashiwa, Kouno, Yahiro, P. R. D 77, 051901

+ $\theta \rightarrow \theta - 2\pi/3 \Rightarrow \frac{Z(\theta)}{invar}$

Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model K. Fukushima, Phys. Lett. B 591, 277 (2004)

Extended Z₃ symmetry and Chiral symmetry

Essence of effective model (theory)

4-quark interaction

QCD phase diagram

Prediction of PNJL model

Sakai, Sasaki, Kouno and Yahiro, arXiv:1104.2394 [hep-ph]

Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys.Rev.D82:096007,2010.

1.2 Effective model in nuclear physics

Effective model (theory)

 $(K+V-E)\Psi=0$

$$V = \sum_{i \in \mathcal{P}, j \in \mathcal{A}} v$$

 \mathcal{V}_{ij} Phenomenological NN interaction \implies Effective model

 \mathcal{V}_{ij} CPT \Longrightarrow Effective theory

Nucleus-nucleus scattering

$(K + h_{\mathrm{P}} + h_{\mathrm{A}} + V - \omega)\hat{\Psi}_{\alpha}^{(+)} = 0 ,$ $V = \sum_{i \in \mathrm{P}, j \in \mathrm{A}} v$

Effective model on scattering of unstable nuclei

$$T = \sum_{n} c_{n} \left(\frac{q}{\Lambda}\right)^{n}$$

2. Microscopic reaction theory

Many-body Schrödinger equation with realistic NN interaction

$$(K + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + h_A + \sum_{i \in P, j \in A} v_{ij} - E)\Psi = 0 \qquad (k + h_P + E)\Psi = 0 \qquad ($$

Schrödinger equation with resummation

M. Yahiro, K. Minomo, K. Ogata, M. Kawai, Prog. Theor. Phys. 120:767-783, 2008

n

b (fm)

1.5

2

2.5

3

0.5

0

1

How to solve

1. Improved Glauber model

M. Yahiro, K. Minomo, K. Ogata, M. Kawai, Prog. Theor. Phys. 120: 767-783,2008.

2. Double folding model

Minomo, Ogata, Kohno, Shimizu and Yahiro, J.Phys.G37:085011,2010.

Minomo, Sumi, Kimura, Ogata, Shimizu and Yahiro, to be published in Phys. Rev. C.

3. Cluster folding model

Yahiro, Ogata and Minomo, Prog. Theor. Phys. in press. Hashimoto, Yahiro, Ogata, Minomo and Chiba, PRC in press.

2.1 Improved Glauber model

M. Yahiro, K. Minomo, K. Ogata, M. Kawai, Prog. Theor. Phys. 120: 767-783,2008.

2.1 Improved Glauber model

$(K + h_{\mathrm{P}} + h_{\mathrm{A}} + V - \omega)\hat{\Psi}_{\alpha}^{(+)} = 0 ,$ $V = \sum_{i \in \mathrm{P}, j \in \mathrm{A}} v$

Eikonal approximation + Adiabatic approximation

Argonne V18 triplet-even state, central part

N-N scattering amplitude

Effective NN interaction

au

T 7

$$(K + h_P + h_A + U - \omega)\Psi_{\alpha}^{(+)} = 0, \qquad U = \frac{Y - 1}{Y} \sum_{ij} \tau_{ij}$$

The improved Glauber amplitude based on the multiple scattering theory

$$T_{\beta\alpha} = -\frac{i\hbar^2 k}{(2\pi)^3 \mu_{\alpha}} \frac{Y}{Y-1} \int d\boldsymbol{b} \exp[-i\boldsymbol{q} \cdot \boldsymbol{b}] \langle \Phi_{\beta} | \Gamma_U(\boldsymbol{b}) | \Phi_{\alpha} \rangle ,$$

$$\Gamma_{U}(\boldsymbol{b}) = 1 - \left\{ \prod_{i=1}^{P} \prod_{j=1}^{A} (1 - \Gamma_{NN}^{(\text{eff})}(\boldsymbol{b}_{ij})) \right\}^{(Y-1)/Y},$$

$$\Gamma_{NN}^{(\text{eff})}(\boldsymbol{b}_{ij}) = 1 - \exp[i\chi_{NN}^{(\text{eff})}(\boldsymbol{b}_{ij})] .$$

$$\chi_{NN}^{(\text{eff})}(\boldsymbol{b}_{ij}) = -\frac{1}{\hbar v} \int_{-\infty}^{\infty} dz_{ij} \,\tau(z_{ij}, \boldsymbol{b}_{ij})$$

Test of the eikonal approximation

 $\alpha + {}^{208}\text{Pb}$ $E_{PA} = 300 \text{ MeV/nucleon}$

Test of the adiabatic approximation

40
Ca + p ($S_n = 15.64 \text{ MeV}$) $E_{PA} = 300 \text{ MeV/nucleon}$

⁴⁰Ca

Non-adiabatic :
$$(K + h_P + \tau^{\rm loc}(\boldsymbol{r}_{ij}) - E) \psi = 0$$

Adiabatic : $(K + \tau^{\rm loc}(\boldsymbol{r}_{ij}) - E_{PA}) \psi = 0$

40
Ca + p $E_{PA} = 300$ MeV/nucleon
 $S_n = 15.64$ MeV

2.2 Double folding model

Minomo, Ogata, Kohno, Shimizu and Yahiro, J.Phys.G37:085011,2010.

Minomo, Sumi, Kimura, Ogata, Shimizu and Yahiro, to be published in Phys. Rev. C.

Double-folding model

Bonn-B NN interaction + phenomenological imaginary potential.

Non-local potential

$$g_{0j} = g(r_{0j})(1 + P_{EX})$$

$$\int$$

$$\int$$

$$\left[-\frac{\hbar^2}{2\mu} \nabla_R^2 + U^{\text{DR}}(\mathbf{R}) + V_c(R) \,\delta_{-1/2}^{\nu_1} - E \right] \chi_{\mathbf{K},\nu_1}(\mathbf{R}) = \int U^{\text{EX}}(\mathbf{R}, \mathbf{r}) \chi_{\mathbf{K},\nu_1}(\mathbf{r}) \,d\mathbf{r}$$

Schroedinger equation for proton scattering

The proton scattering from ⁹⁰Zr

The Brieva-Rook localization

Nucl. Phys. A291,317

K. Minomo, K. Ogata, M. Kohno, Y.R. Shimizu, M. Yahiro, J.Phys.G37:085011,2010.

Deformation effect on reaction cross section

Minomo, Sumi, Kimura, Ogata, Shimizu and Yahiro, to be published in Phys. Rev. C.

²⁰⁻³²Ne+¹²C scattering at 240 MeV/nucleon

Wyss parametrization

2.3 Cluster folding model

Yahiro, Ogata and Minomo, Prog. Theor. Phys. in press.Hashimoto, Yahiro, Ogata, Minomo and Chiba, PRC in press.

3. Eikonal Reaction Theory

Yahiro, Ogata and Minomo, Prog. Theor. Phys. in press. Hashimoto, Yahiro, Ogata, Minomo and Chiba, PRC in press.

Numerical results (CDCC)

T. Nakamura, et al., Phys. Rev. Lett. 103 (2009), 262501.													
	12	C targe	t		20								
	$p_{3/2}$	$f_{7/2}$	exp		$p_{3/2}$	$f_{7/2}$	exp						
$\sigma_{ m str}$	90	29			244	53							
$\sigma_{ m bu}$	23.3	3.3			799.5	73.0	(54	10)					
σ_{-n}	(114)	32	79 :	± 7	(1044)	126	712 :	± 65					
${\mathcal S}$	0.693	2.47			0.682	5.65							

 $\mathcal{S}_{\rm AMD} \sim 0.55~({\rm Preliminary~result})~$ by M. Kimura

The Glauber-model calculation with Coulomb corrections

P. Capel, D. Baye, and Y. Suzuki, Phys. Rev. C 78 (2008), 054602.
W. Horiuchi, Y. Suzuki, P. Capel, and D. Baye, Phys. Rev. C 81 (2010), 024606.

 $\sigma_{-n} = 96 \text{(mb)} \ (S = 0.823) \ \sigma_{-n} = 1140 \text{(mb)} \ (S = 0.625)$

Eikonal Reaction Theory

$$(E - \frac{\hbar^2}{2\mu}\Delta - \hat{h} - V_n - V_c)\psi = 0$$

Eikonal assumption

Eikonal decomposition of S

$$S = \exp\left[-i\frac{1}{\hbar v}P\int_{-\infty}^{\infty}dzO^{-1}(V_n + V_c)O\right]$$

$$\approx \exp\left[-i\frac{1}{\hbar v}\int_{-\infty}^{\infty}dzV_n\right]\exp\left[-i\frac{1}{\hbar v}P\int_{-\infty}^{\infty}dzO^{-1}V_cO\right]$$

$$= S_nS_c$$

$$O^{-1}V_nO \approx V_ne^{i(k_i - k_f)a}$$

How to get S_c

$$(E - \frac{\hbar^2}{2\mu}\Delta - \hat{h} - V_n - V_c)\psi = 0$$

$$(E - \frac{\hbar^2}{2\mu}\Delta - \hat{h} - V_c)\psi_c = 0 \qquad \text{Eikonal CDCC}$$

K.Ogata, Hashimoto, Iseri, Kamimura, and Yahiro, PRC<u>73</u>, 024605 (2006).

Eikonal decomposition of S

$$S = \exp\left[-i\frac{1}{\hbar v}P\int_{-\infty}^{\infty}dzO^{-1}(V_n + V_c)O\right]$$

$$\approx \exp\left[-i\frac{1}{\hbar v}\int_{-\infty}^{\infty}dzV_n\right]\exp\left[-i\frac{1}{\hbar v}P\int_{-\infty}^{\infty}dzO^{-1}V_cO\right]$$

$$= S_nS_c$$

$$O^{-1}V_nO \approx V_ne^{i(k_i - k_f)a}$$

One nucleon removal reaction

$$\sigma_{\rm str} = \int d^2 \boldsymbol{b} \langle \varphi_0 || S_{\rm c} |^2 (1 - |S_{\rm n}|^2) |\varphi_0 \rangle$$

Numerical results (CDCC)

T. Nakamura, et al., Phys. Rev. Lett. 103 (2009), 262501.													
	12	C targe	t		20								
	$p_{3/2}$	$f_{7/2}$	exp		$p_{3/2}$	$f_{7/2}$	exp						
$\sigma_{ m str}$	90	29			244	53							
$\sigma_{ m bu}$	23.3	3.3			799.5	73.0	(54	10)					
σ_{-n}	(114)	32	79 :	± 7	(1044)	126	712 :	± 65					
${\mathcal S}$	0.693	2.47			0.682	5.65							

 $\mathcal{S}_{\rm AMD} \sim 0.55~({\rm Preliminary~result})~$ by M. Kimura

The Glauber-model calculation with Coulomb corrections

P. Capel, D. Baye, and Y. Suzuki, Phys. Rev. C 78 (2008), 054602.
W. Horiuchi, Y. Suzuki, P. Capel, and D. Baye, Phys. Rev. C 81 (2010), 024606.

 $\sigma_{-n} = 96 \text{(mb)} \ (S = 0.823) \ \sigma_{-n} = 1140 \text{(mb)} \ (S = 0.625)$

Accuracy of the Glauber model

Hashimoto, Yahiro, Ogata, Minomo and Chiba, PRC in press.

Deuteron scattering from several targets at 200 MeV/nucleon

d+⁵⁸Ni elastic scattering at 400 MeV

Reaction cross sections

150

А

200

250

4. Summary

Fine spectroscopy in unstable nuclei

- 1. Fine experiments (RIBF)
- 2. Fine reaction theory
 - (Eikonal reaction theory, Modified Glauber model)
- 3. Fine structure theory (Shell model, AMD, MF)
- 4. Fine effective N-N interaction (t-matrix, g-matrix)

The equation of state