Spectral flow of staggered Wilson Dirac operator in SU(2) instanton backgrounds

Andriy Petrashyk

Nanyang Technological University, Singapore

Objective

Investigate robustness of staggered Wilson fermion index in rough SU(2) instanton backgounds.

Context

Staggered fermions correctly reproduce index when looking at the spectral flow of

$$H_{st}(m) = iD_{st} - m\Gamma_5$$

[Adams, 2010]

here varying the parameter m is equivalent to varying the Wilson parameter r in the Wilson case.

A true analogue of the hermitian Wilson $H(m) = \gamma_5(D_W - m)$ will be

$$H_{sW}(m) = \Gamma_{55}(D_{st} + (1 - \Gamma_{55}\Gamma_5) - m)$$

[Adams, 2011]

Instanton Backgrounds

We'll look at spectral flows of $H_W(m)$, $H_st(m)$ and $H_sW(m)$ in SU(2) instanton backgrounds

$$U_{\mu}(n) = exp \left[i \vec{a}_{\mu}(n) \cdot \vec{\sigma} \vartheta_{\mu}(n, \rho^2) \right]$$

[Edwards et al., 1998]

And will roughen the smooth instanton fields by acting on the smooth link variables with random SU(2) elements in the vicinity of I:

$$U_{\mu}(n)_{(\epsilon)} = I \cdot r_{\mu}^{(0)}(x) + i \sum_{j=1}^{3} \sigma_{j} r_{\mu}^{(j)}(x)$$

Spectral flow in smooth background

Instantons are of size 2.0 are at the centre of the lattice. Lattice size 8^4 , Dirichlet B.C.s

zoomed in

zoomed in

Conclusion

Wilson fermion index still seems more robust, although not significantly.

Comuputational efficiency of staggered Wilson outweighs this lack of robustness?