Lattice **QCD** with physical quark masses

Christian Hoelbling Budapest-Marseille-Wuppertal collaboration

Bergische Universität Wuppertal

NTFL workshop, YITP, Kyoto Feb. 17, 2012

(PLB 705:477,2011, JHEP 1108:148,2011; PLB 701:265,2011)

Christian Hoelbling (Wuppertal) Lattice **QC** with physical quark masses

Lattice setup ●○○ Quark masses

Kaon mixing

Landscape

Landscape M_{π} vs. *a*

Lattice setup ○●○ Quark masses

Kaon mixing

Landscape

Landscape L vs. M_{π}

Lattice setup ○○● Quark masses

Kaon mixing

Landscape

Landscape M_K vs. M_{π}

Kaon mixing

Ratio-difference method

Quark mass definitions

✓ No additive mass renormalization and ambiguity in *m*_{crit}
 ✓ Only *Z*_S multiplicative renormalization (no pion poles)
 Image: Works with *O*(*a*) improvement (we use this)

Renormalization

Nonperturbative running

Kaon mixing

Finite volume

Tiny finite volume effects

- FV effects tiny
- Dedicated FV runs
- Perfect agreement with FV χ PT (Colangelo et. al.

2005)

Kaon mixing

m_{ud} and m_s

Strange quark mass

Christian Hoelbling (Wuppertal) Lattice **QC** with physical quark masses

Kaon mixing

 m_{ud} and m_s

Light quark masses

Systematic errors

Systematic error treatment

- Goal:
 - Reliably estimate total systematic error
- Method:
 - 288 full analyses (2000 bootstrap on each)
 - 2 plateaux regions
 - 2 continuum forms: $O(\alpha_s a)$, $O(a^2)$
 - 3 chiral forms: $2 \times SU(2)$, Taylor
 - 2 chiral ranges: $M_{\pi} < 340,380$ MeV
 - 3 renormalization matching procedures
 - 2 NP continuum running forms
 - 2 scale setting procedures
 - All analyses weighted by fit quality
 - Mean gives final result
 - Stdev gives systematic error
 - Statistical error from 2000 bootstrap samples

Systematic errors

Final result

	RI @ 4 GeV	RGI	<u>MS</u> @ 2 GeV
m _s	96.4(1.1)(1.5)	127.3(1.5)(1.9)	95.5(1.1)(1.5)
m _{ud}	3.503(48)(49)	4.624(63)(64)	3.469(47)(48)
m _u	2.17(04)(10)	2.86(05)(13)	2.15(03)(10)
m _d	4.84(07)(12)	6.39(09)(15)	4.79(07)(12)

Additional consistency checks:

- ✓ Use m^{PCAC} only, no ratio-difference method
 Image: Sightly larger error
- ✓ Unweighted final result and systematic error regligible impact
- ✓ Additional Continuum, chiral and FV terms
 Image: Second s

Systematic errors

Comparison

Christian Hoelbling (Wuppertal)

Kaon mixing •00000C

Data

Wilson $B_{\mathcal{K}}$: Unphysical operator mixing

- $\propto \chi$ SB induces mixing with 4 unphysical operators
- Mixing terms chirally enhanced
- ✓ Small even below physical m_{π}
- Good chirality of our action

0.002

0.001 ٥

-0.00 -0.002 -0.003

5

sub 14

Lattice	setup	

Data

Signal

Christian Hoelbling (Wuppertal) Lattice **C** with physical quark masses

Lattice	setup

Kaon mixing

Data

Running

Lattice	setup

Kaon mixing

Results

Physical point

Lattice	setup

Kaon mixing

Results

Continuum extrapolation

Kaon mixing ○○○○○●○

Results

Errors

Results

Comparison

BACKUP

Christian Hoelbling (Wuppertal) Lattice C with physical quark masses

Action details

Goal:

- Optimize physics results per CPU time
- Conceptually clean formulation

Method:

- Dynamical 2 + 1 flavor, Wilson fermions at physical M_{π}
- 3-5 lattice spacings 0.053 fm < a < 0.125 fm
- Tree level $O(a^2)$ improved gauge action (Lüscher, Weisz, 1985)
- Tree level O(a) improved fermion action (Sheikholeslami, Wohlert, 1985)
 - Why not go beyond tree level?
 - Keeping it simple (parameter fine tuning)
 - No real improvement, UV mode suppression took care of this
 - This is a crucial advantage of our approach
- UV filtering (APE coll. 1985; Hasenfratz, Knechtli, 2001; Capitani, Durr, C.H., 2006)
- → Discretization effects of $O(\alpha_s a, a^2)$
 - ✓ We include both $O(\alpha_s a)$ and $O(a^2)$ into systematic error

Kaon mixing

Algorithm stability

Kaon mixing

No exceptional configs

0

0.04

0.08

0.12

Inverse iteration count (1000/N_{co})

Christian Hoelbling (Wuppertal) Lattice GC with physical quark masses

0.04

0.08

0.12

0

Kaon mixing

Topological sector sampling

worst case

Kaon mixing

Autocorrelation time (finest lattice, small mass)

normalized autocorrelation for $|q^{ren}|$ at β =3.8, m_{ud} =-0.02, m_s =0

(MATLAB code from Wolff,

2004-7)

Locality properties

- locality in position space: |D(x,y)| < const e^{-λ|x-y|} with λ=O(a⁻¹) for all couplings. Our case: D(x,y)=0 as soon as |x-y|>1 (despite smearing)
- locality of gauge field coupling:

 $|\delta D(x, y)/\delta A(z)| < \text{const} e^{-\lambda |(x+y)/2-z|}$ with $\lambda = O(a^{-1})$ for all couplings.

Our case: $\delta D(x, x) / \delta A(z) < \text{const } e^{-\lambda |x-z|}$ with $\lambda \simeq 2.2a^{-1}$ for $2 \le |x-z| \le 6$

Kaon mixing

Gauge field coupling locality

6-stout case:

Kaon mixing

Effective masses and correlated fits

Christian Hoelbling (Wuppertal) Lattice QC with physical quark masses

Individual m_u and m_d

- Goal:
 - Compute m_u and m_d separately
- Method:
 - Need QED and isospin breaking effects in principle
 - Alternative: use dispersive input -Q from $\eta \to \pi \pi \pi$

$$Q^2 = rac{1}{2} \left(rac{m_s}{m_{ud}}
ight)^2 rac{m_d - m_u}{m_{ud}}$$

- ✓ Transform precise m_s/m_{ud} into $(m_d m_u)/m_{ud}$
- We use the conservative Q = 22.3(8) (Leutwyler, 2009)