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Introduction

Will discuss staggered versions of Wilson fermions, domain wall
fermions and overlap fermions on the lattice.

They are theoretically novel, and the hope is that they might also
be computationally more efficent than the usual Wilson-based
fermions.

Background:

Originated from an attempt to identify and understand the
would-be zero-modes and index of the staggered Dirac operator,
and construct overlap fermions from staggered fermions.
[D.A., PRL (2010), PLB (2011)]

Will review the developments and recent results discussed at this
workshop.



Outline

Introduction

Traditional approaches: Wilson fermions & staggered fermions

Wilson Terms for Staggered Fermions

Properties of Staggered Wilson Fermions

Index Theorem

Example of a Meson Propagator

Summary



Traditional Approaches to Lattice Fermions

◮ Start from naive discretization of Dirac operator:

Dnaive = γµ∇µ = γµ
1
2a (Tµ+ − Tµ−)

where

Tµ+ψ(x) = Uµ(x)ψ(x + aµ̂) , Tµ− = (Tµ+)
−1.

◮ Free field momentum rep is

D̂naive(p) = iγµ
1
a
sin(apµ)

→ D̂naive(p) = 0 has 16 solutions for p ∈ (−π

a
, π
a
]4.

→ 16 lattice fermion species → 15 spurious “doublers”.



Traditional Approaches (continued)

Wilson fermions: Add a term to give mass ∼ 1
a
to the 15

spurious species:

DW = γµ∇µ + a r

2∆ ∆ = lattice Laplace op.

→ D̂W (p) = iγµ
1
a
sin(apµ) +

r

a

∑
ν
(1− cos(apν))

→ D̂W (p) = 0 only has one solution: p = 0.

Disadvantages:

◮ The continuum chiral symm {D , γ5} = 0 is broken by the
Wilson term a r

2∆.

◮ O(a2) discretization error of naive fermion becomes O(a).



Traditional Approaches (continued)

Staggered fermions: The 16 species of Dnaive = γµ∇µ can be
reduced to 4 species via spin-diagonalization:

Λψ(x) = γn11 · · · γn44 ψ(x) x = a(n1, n2, n3, n4)

gives
Λ−1(γµ∇µ)Λ = Dst 1

where

Dst = ηµ∇µ , ηµψ(x) = (−1)n1+···+nµ−1 ψ(x)

Note: Dst is a scalar operator.

⇒ Naive lattice fermion ≃ 4 copies of staggered fermion
described by Dst .
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Spin–Flavor Interpretation of Staggered Fermions

◮ Momentum space approach:

p ∈ [− π

2a ,
3π
2a ]

4 written as

p = q+π

a
A , q ∈ [− π

2a ,
π

2a ]
4 , A = (A1, . . . ,A4) , Aµ ∈ {0, 1}

→ χ̂(p) = χ̂(q + π

a
A) ≡ χ̂A(a).

→ Free field momentum rep of Dst = γµ∇µ has the form

Γ̂µ
i

a
sin(aqµ)

where Γ̂µ = (Γ̂µ)AB are 16× 16 matrices giving a 16-dim rep
of Dirac algebra.

→ decomposes into 4 copies of 4-dim rep: the 4 flavors.

◮ There is also a free field coordinate space approach.
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How about a Wilson term for staggered fermions?

Goal:

Reduce number of fermion species from 4 to 1 (or 2).

Then will have fewer “doubler” species than in usual Wilson case:
3 (or 2) versus 15.

→ More efficient than usual Wilson fermions.

Natural approach is to add a momentum-dependent “flavored”
mass term Wst to staggered Dirac operator:

Dst → Dst +
1
a
Wst

Zero-eigenmodes for Wst → physical fermion species

Nonzero eigenmodes for Wst → doubler species with mass ∼ 1/a

To avoid complex fermion det, require W
†
st = Γ55WstΓ55.



Flavored Mass Terms for Staggered Fermions

The possible flavoured mass terms for staggered fermions were
found long ago [Golterman & Smit (1984)].

Ingredients:

◮ Γ55 ≃ γ5 ⊗ γ5 Γ55χ(n) = (−1)n1+n2+n3+n4 χ(n)

◮ Γ5 ≃ γ5 ⊗ 1+ O(a2) Γ5 = η5C

where

η5 = η1η2η3η4 , η5χ(n) = (−1)n1+n3χ(n)

C = (C1C2C3C4)sym , Cµ = 1
2a (Tµ+ + Tµ−)

Recall Tµ+χ(n) = Uµ(n)χ(n + µ̂) is parallel transporter.



Wilson Terms for Staggered Fermions

The most general flavored mass term satisfying Γ55-hermiticity is

Wst = c1+
∑

µ<ν
cµνMµν + c5M5

where the 2-link operators Mµν and 4-link operator M5 are given by

Mµν = iηµνCµν , Cµν = 1
2(CµCν + CνCµ)

M5 = η5Γ55Γ5

Spin-flavor interpretations:

Mµν ∼ 1⊗ iγµγν , M5 ∼ 1⊗ γ5

For staggered Wilson term, choose c , the cµν ’s and c5 so that Wst

has 1 (or 2) zero-eigenmodes.



Wilson Terms for Staggered Fermions (cont’d)

This is quite an obvious possibility, so why didn’t Golterman &
Smit or others already do it a long time ago?

Answer (my guess):

1. Concern about breaking lattice rotation invariance with the
Mµν ’s.

2. Loses 2 key advantageous features of staggered fermions:

◮ Exact flavored chiral symm {Dst , Γ55} = 0 is broken.

◮ O(a2) discretization error becomes O(a).

3. Compared to usual Wilson fermion, is the gain in efficiency (if
it is even realized) enough to justify the more complicated
spin-flavor structure?

In the old days, efficiency was not a pressing concern. It is more so
now.



Why is staggered-Wilson more interesting now?

◮ Realistic unquenched Lattice QCD simulations are now
possible.
→ Much efforts to find “improved” formulations to get closer
to the continuum limit and chiral limit without an excessive
increase in computing cost.

Can staggered-Wilson do significantly better than usual
Wilson for this?

◮ Chirally improved lattice fermion formulations have been
found: domain wall fermions and overlap fermions.

– Built from Wilson fermions.

– Attractive theoretical properties but computationally very
expensive

⇒ Look for more computationally efficient versions of these.

Can staggered-Wilson give a more efficient version of domain
wall and overlap fermions?



A 2-flavor staggered Wilson term

Work on the staggered fermion index and a related staggered
overlap fermion construction [D.A. PRL (2010), PLB (2011)] led
to staggered Wilson fermion with Wilson term constructed with
the flavored mass term M5 = Γ55Γ5 :

Wst =
1
a
(1− Γ55Γ5)

Recall Γ55Γ5 ≡ 1⊗ γ5 + O(a2)

Decompose the 4 Dirac fermion spaciesof the staggered fermion
into 2 species with positive flavor-chirality under 1⊗ γ5 and 2
species with negative flavor-chirality.

Then Wst keeps the 2 positive flavor-chirality species as the
physical fermions and gives mass ∼ 1/a to the negative
flavor-chirality species; they become the “doublers”.

→ Get 2-flavor staggered-Wilson fermion on the lattice.



Free field spectrum of 2-flavor staggered-Wilson

[P. de Forcrand, Lattice 2010 conf.]

Green: Eigenvalues of free field DsW (staggered Wilson)
Blue: Eigenvalues of free field DW (usual Wilson)
.
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→ Spectrum of staggered Wilson is sensible and contains

much less junk than spectrum of usual Wilson.



Symmetries of 2-flavor staggered-Wilson

Classical action is χ̄DsWχ where

DsW = Dst +
r0
a
(1− Γ55Γ5) +m0

r0, m0: bare parameters.

It is invariant under lattice rotations and all the symmetries of the
original staggered fermion, except the “shift transformations” – for
these have

χ̄Γ55Γ5χ → −χ̄Γ55Γ5χ

Turns out only one new counter-term is possible: {Γ55Γ5 ,Dst}.



Symmetries of 2-flavor staggered-Wilson (cont’d)

→ The quantum effective action can be put in the form χ̄DsWχ
where

DsW = (1 + cΓ55Γ5)Dst +
r

a
(1− Γ55Γ5) +m

and

m = m0 +
c ′

a

Note Γ55Γ5Dst ≡ (1⊗ γ5)Dst which coincides with Dst on the
physical species.

→ Can approach massless (chiral) limit by tuning bare mass m0:

m0 → −
c ′

a

This is basically the same situation as for usual Wilson fermions.



2-flavor staggered-Wilson (cont’d)

◮ Should check that a massless (chiral) limit can be approached
by calculating the “pion” mass as a function of the bare quark
mass in a Lattice QCD simulation.

◮ Also, do same with usual Wilson fermions and see if
staggered-Wilson is more chiral, i.e. can reach a smaller pion
mass than usual Wilson.

Simulation details: quenched simulation with 50 configs at β = 6.0
on two lattices: 123 × 32 and 163 × 32.

Done by Andriy Petrashyk, following instructions from Daniel
Nogradi.



Pion mass plots
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2-flavor staggered-Wilson: spectrum calculations

◮ The spectrum of the staggered-Wilson Dirac operator in a
typical quenched β = 6 background on an 84 lattice was
presented by Ph. de Forcrand.

It doesn’t look good, but usual Wilson spectrum was not
presented for comparison.

◮ The spectrum looks even worse on 44 lattice at β = 5.6
(results of S. Durr, presented at the workshop). Comparison
with Wilson spectrum was also made in this case and
staggered-Wilson looks worse.

◮ It would be interesting to compare staggered-Wilson and usual
Wilson spectra in quenched β = 6 background on 163 × 32
lattice
– the pion mass results suggest staggered-Wilson may be
better in that case.



1-flavor staggered-Wilson

[C. Hoelbling, PLB (2011)]

Consider a staggered Wilson term built from the Mµν flavored
mass terms:

WH

st = 1
a
(M12 +M13 +M14 +M23 +M24 +M34)

(or variants with different sign combinations).

This splits the flavor degeneracy to provide a 1-flavor
staggered-Wilson theory with Dirac operator

DH

sW = Dst +
1
a
(WH

st + 1)



Free field spectrum for 1-flavor staggered-Wilson

[C. Hoelbling, this workshop.]

Blue: 1-flavor staggered-Wilson
Purple: 2-flavor staggered-Wilson
Yellow: Usual Wilson
.



1-flavor staggered-Wilson: symmetries

It maintains all staggered fermion symmetries except for the shift
transformations:
these change χ̄Mµνχ → −χ̄Mµνχ if the shift is along the µ− or
ν− axes.

However, lattice rotation symmetry is broken.

E.g. under R(12) have

WH

st → 1
a
(M12 −M13 +M14 +M23 −M24 +M34)

But still have a residual lattice rotation symmetry:

WH
st is invariant under double rotations R(µν)R(σρ) when µ, ν, σ, ρ

are all different.



Is 1-flavor staggered-Wilson viable?

◮ Spacetime rotation symmetry along with gauge invariance is
essential fr renormalizability of continuum QCD. –excludes
new counterterms from arising.

◮ In lattice QCD the rotation symmetry is broken down to the
discrete subgroup of hypercubic lattice rotations.

Miraculously, this is still enough to exclude new counterterms
and maintain renormalizability [T. Reisz].

◮ For 1-flavor staggered-Wilson the spacetime rotation
symmetry is broken even further, down to the double rotations
R(µν)R(σρ) for µ, ν, σ, ρ all different.
Can we hope for a further miracle?

(Doubtful IMHO)
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Index via Spectral Flow

Spectral flow of H(m) in a U(1) background with Q = 1 on
12× 12 lattice:

m on horizontal axis; eigenvalues of H(m) on vertical axis

−1 0 1 2 3
−2

−1

0

1

2

staggered Wilson
HsW (m) = Γ55(DsW −m)

−1 0 1 2 3 4 5
−2

−1

0

1

2

usual Wilson
HW (m) = γ5(DW −m)



Index via Spectral Flow (continued)

Spectral flow of H(m) in another U(1) background with Q = −2

on 12× 12 lattice:
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