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1. Introduction
Flavor-Chiral Symmetries of QCD at low T

U(Nf )L ⊗ U(Nf )R

flavor-chiral
chiral anomaly
(explicit breaking)

U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R U(1)B ⊗ S(Nf )V

spontaneous breaking of
chiral symmetry

QCD at high T
deconfinement (QGP)

restoration of chiral symmetry

low T high TU(1)B ⊗ S(Nf )V U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R

phase transition

How about U(1)A symmetry ?
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1. Analytic: U(1)A symmetry is also “restored” above Tc.  Cohen(96)

2. Analytic: U(1)A symmetry breaking appears at Nf point functions above Tc.  
       Lee-Hatsuda(96)

3. Lattice: U(1)A symmetry is still “broken” just above Tc .
      Chandrasekharan-Christ(96), Bernald, et al. (97)

How about U(1)A symmetry ?
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Cohen’s argument
Meson operator and chiral symmetry( Nf = 2)

MA
Γ (x) = ψ̄a(x)f

α(Γ ⊗ TA)fg
αβψa(x)g

β

color

Dirac

flavor

σ meson: 1 ⊗ 1 π meson: γ5 ⊗ τa

δ meson: 1 ⊗ τaη meson: γ5 ⊗ 1

chiral SU(2)

chiral SU(2)

U(1)A U(1)A

U(1)A: ψ → eiπ/4γ51ψ, ψ̄ → ψ̄eiπ/4γ51

chiral SU(2): ψ → eiπ/4γ5τa
ψ, ψ̄ → ψ̄eiπ/4γ5τa
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2-pt function

Pm(G) =
1
Z

e−SY M (G) det[γµDµ(G) − m]

ΠA
Γ1Γ2

(x) = 〈MA
Γ1

(x)MA
Γ2

(0)〉

−ΠA
Γ1Γ2

(x) =
∫

D[G]Pm(G){tr[Γ1SG(x, 0)Γ2SG(0, x)] − δA0tr[Γ1SG(x, x)]tr[Γ2SG(0, 0)]}

χU(1)A
=

∫
d4x[Πσ(x) − Πδ(x)] =

∫
d4x

∫
D[G]Pm[G]trSG(x, x)trSG(0, 0)

U(1)A symmetry is restored ⇒ χU(1)A
= 0

“Spectral” representation

1
V

∫
d4x〈ψ̄(x)ψ(x)〉 = − 1

V

∫
D[G]

∑

j

[
1

iλj − m
+

1
−iλj − m

]
Pm(G) =

∫
D[G]Pm(G)

∫
dλρG(λ)

2m

λ2 + m2

eigenvalue of γµDµ

density of eigenvalues ρG(λ) =
1
V

∑

j

δ(λ − λj(G))
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Chiral symmetry restoration

〈ψ̄ψ〉 = 2πρ(0) = 0, m → 0

ρ(λ) =
∫

D[G]Pm(G)ρG(λ)

Pm(∀G) ≥ 0 ρG(0) = 0 for ∀G

χU(1)A
/V =

∫
D[G]Pm[G]

{∫
dλρG(λ)

2m

λ2 + m2

}2

= O(m2) → 0, (m → 0)

χU(1)A
/V = 0, (m → 0) U(1)A seems to be restored.

However, where is “anomaly” ?
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Loophole of the argument 

Effect of zero mode (Q=-1,1)

〈ψ̄ψ〉 ∝ mNf × 1
m

→ 0

but

χU(1)A
∝ mNf × 1

m2
#= 0 at Nf = 2

Lee-Hatsuda(96)

O(mNf ) contribution
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Lattice Results(KS fermion)

FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So
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FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So
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Bernald et al. (97)

Chiral symmetry is restored. U(1)A is NOT.
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FIG. 2. The quantity ω, which directly measures anomalous symmetry breaking, plotted versus

fermion mass, ma. Also shown are the chiral condensate 〈χ̄χ〉 and the pseudoscalar susceptibility
χP. We studied a 163 × 4 lattice at β = 5.3, just above βc.
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Chandrasekharan et al. (98)

〈ψ̄ψ〉

χU(1)A

Chiral symmetry is restored at hight T, 
but U(1)A is not recovered.
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This talk

give a more precise argument in continuum QCD.
give a rigorous argument in lattice QCD with overlap fermions.
consider a more general case. 

1. Introduction

2. Continuum QCQ

3. Lattice QCD with overlap fermions

4. General cases

5. Discussion

Content
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2. Continuum QCD
“Spectral” representation of quark propagator

and

〈f(A)〉A =
∫

DAPm(A)f(A) (12)

Pm(A) =
1
Z

e−SY M (A) det[γµDµ(A) − m], (13)

Z =
∫

DAe−SY M (A) det[γµDµ(A) − m]. (14)

1.2 Basic formula

We now express fermion propagator in terms of eigenvalues of anti-Hermitian Dirac
operator DA ≡ γµDµ(A), which satisfies {DA, γ5} = 0 in the continuum theory.
Pairs of non-zero modes are given by

DAφn(x) = iλA
n φA

n (x), (15)
DAγ5φn(x) = iλA

n γ5φ
A
n (x), (16)

which satisfies (φn,φm) = δnm and (φn, γ5φm) = 0 for the inner product (f, g),
while zero modes satisfy DAφA

k (x) = 0 are chiral as

γ5φ
A
k (x) = φA

k (x) (k = 1, 2, · · · , NR(A)), (17)
γ5φ

A
k (x) = −φA

k (x) (k = NR(A) + 1, · · · , NR(A) + NL(A)), (18)

where (φk,φl) = δkl. In terms of these eigenvalues and eigenfunctions, the fermion
propagator can be expressed as

SA(x, y) = − 1
m

∑

k

φA
k (x)φA

k (y)† +
∑

λn>0

[φA
n (x)φA

n (y)†

iλA
n − m

+
γ5φA

n (x)φA
n (y)†γ5

−iλA
n − m

]

(19)

Using this representation, the chiral condensate becomes

〈ψ̄(x)ψ(x)〉 = −Nf

V

〈
− 1

m

∑

k

(φk,φk)

+
∑

λn>0

[
1

iλA
n − m

(φA
n ,φA

n ) +
1

−iλA
n − m

(γ5φ
A
n , γ5φ

A
n )

]〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2

1
V

∑

λn>0

δ(λ − λA
n )

〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2
ρA(λ)

〉

A
(20)

where NR+L = NR + NL and

ρA(λ) =
1
V

∑

λn>0

δ(λ − λA
n ) (21)

is the density of eigenvalues. Using the definition

2πδ(λ) = lim
m→0

[
1

iλ + m
+

1
−iλ + m

]

and assuming regularity of
ρm(λ) ≡ 〈ρA(λ)〉A

2

zero modes(chiral)A: gauge fields

and

〈f(A)〉A =
∫

DAPm(A)f(A) (12)

Pm(A) =
1
Z

e−SY M (A) det[γµDµ(A) − m], (13)

Z =
∫

DAe−SY M (A) det[γµDµ(A) − m]. (14)

1.2 Basic formula

We now express fermion propagator in terms of eigenvalues of anti-Hermitian Dirac
operator DA ≡ γµDµ(A), which satisfies {DA, γ5} = 0 in the continuum theory.
Pairs of non-zero modes are given by

DAφn(x) = iλA
n φA

n (x), (15)
DAγ5φn(x) = iλA

n γ5φ
A
n (x), (16)

which satisfies (φn,φm) = δnm and (φn, γ5φm) = 0 for the inner product (f, g),
while zero modes satisfy DAφA

k (x) = 0 are chiral as

γ5φ
A
k (x) = φA

k (x) (k = 1, 2, · · · , NR(A)), (17)
γ5φ

A
k (x) = −φA

k (x) (k = NR(A) + 1, · · · , NR(A) + NL(A)), (18)

where (φk,φl) = δkl. In terms of these eigenvalues and eigenfunctions, the fermion
propagator can be expressed as

SA(x, y) = − 1
m

∑

k

φA
k (x)φA

k (y)† +
∑

λn>0

[φA
n (x)φA

n (y)†

iλA
n − m

+
γ5φA

n (x)φA
n (y)†γ5

−iλA
n − m

]

(19)

Using this representation, the chiral condensate becomes

〈ψ̄(x)ψ(x)〉 = −Nf

V

〈
− 1

m

∑

k

(φk,φk)

+
∑

λn>0

[
1

iλA
n − m

(φA
n ,φA

n ) +
1

−iλA
n − m

(γ5φ
A
n , γ5φ

A
n )

]〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2

1
V

∑

λn>0

δ(λ − λA
n )

〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2
ρA(λ)

〉

A
(20)

where NR+L = NR + NL and

ρA(λ) =
1
V

∑

λn>0

δ(λ − λA
n ) (21)

is the density of eigenvalues. Using the definition

2πδ(λ) = lim
m→0

[
1

iλ + m
+

1
−iλ + m

]

and assuming regularity of
ρm(λ) ≡ 〈ρA(λ)〉A

2

and

〈f(A)〉A =
∫

DAPm(A)f(A) (12)

Pm(A) =
1
Z

e−SY M (A) det[γµDµ(A) − m], (13)

Z =
∫

DAe−SY M (A) det[γµDµ(A) − m]. (14)

1.2 Basic formula

We now express fermion propagator in terms of eigenvalues of anti-Hermitian Dirac
operator DA ≡ γµDµ(A), which satisfies {DA, γ5} = 0 in the continuum theory.
Pairs of non-zero modes are given by

DAφn(x) = iλA
n φA

n (x), (15)
DAγ5φn(x) = iλA

n γ5φ
A
n (x), (16)

which satisfies (φn,φm) = δnm and (φn, γ5φm) = 0 for the inner product (f, g),
while zero modes satisfy DAφA

k (x) = 0 are chiral as

γ5φ
A
k (x) = φA

k (x) (k = 1, 2, · · · , NR(A)), (17)
γ5φ

A
k (x) = −φA

k (x) (k = NR(A) + 1, · · · , NR(A) + NL(A)), (18)

where (φk,φl) = δkl. In terms of these eigenvalues and eigenfunctions, the fermion
propagator can be expressed as

SA(x, y) = − 1
m

∑

k

φA
k (x)φA

k (y)† +
∑

λn>0

[φA
n (x)φA

n (y)†

iλA
n − m

+
γ5φA

n (x)φA
n (y)†γ5

−iλA
n − m

]

(19)

Using this representation, the chiral condensate becomes

〈ψ̄(x)ψ(x)〉 = −Nf

V

〈
− 1

m

∑

k

(φk,φk)

+
∑

λn>0

[
1

iλA
n − m

(φA
n ,φA

n ) +
1

−iλA
n − m

(γ5φ
A
n , γ5φ

A
n )

]〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2

1
V

∑

λn>0

δ(λ − λA
n )

〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2
ρA(λ)

〉

A
(20)

where NR+L = NR + NL and

ρA(λ) =
1
V

∑

λn>0

δ(λ − λA
n ) (21)

is the density of eigenvalues. Using the definition

2πδ(λ) = lim
m→0

[
1

iλ + m
+

1
−iλ + m

]

and assuming regularity of
ρm(λ) ≡ 〈ρA(λ)〉A

2

NR+L = NR + NL
in the limit that m → 0, we obtain

lim
m→0

lim
V →∞

〈ψ̄(x)ψ(x)〉 = lim
m→0

Nf

[
πρm(0) + lim

V →∞

〈NR+L(A)〉A
mV

]
, (22)

where

Pm(A) = e−SY M (A)(−m)Nf NR+L
∏

λn>0

(λ2
n + m2). (23)

Therefore, if Nf is even, Pm(A) is an even function of m, and is positive for m %= 0.
Similarly we obtain

1
V

∫
d4xd4y〈tr SA(x, y)SA(y, x)〉A =

〈 1
m2V

NR+L(A)

+
∫

dλ ρA(λ)
2(m2 − λ2)
(λ2 + m2)2

〉

A
(24)

1
V

∫
d4xd4y〈tr SA(x, x) tr SA(y, y)〉A = V

〈( 1
mV

NR+L(A)

+
∫

dλ ρA(λ)
2m

λ2 + m2

)2〉

A
(25)

1
V

∫
d4xd4y〈tr γ5SA(x, y)γ5SA(y, x)〉A =

〈 1
m2V

NR+L(A)

+
∫

dλ ρA(λ)
2

λ2 + m2

〉

A
(26)

1
V

∫
d4xd4y〈tr γ5SA(x, x) tr γ5SA(y, y)〉A =

〈N2
R−L(A)〉A
m2V

=
N2

f 〈Q2(A)〉A
m2V

(27)

where NR−L = NR − NL = NfQ for the topological charge Q.

1.3 Chiral symmetry restoration at high temperature and
density of eigenvalues

To constrain the form of the eigenvalue density from the chiral symmetry, we expand
ρA(λ) as

ρA(λ) =
∞∑

n=0

ρA
n

λn

n!
= ρA

0 + ρA
1 λ + ρA

2
λ2

2!
+ · · · . (28)

We here assume that ρA can be expanded at λ = 0.
Using this expansion, we have

∫
dλ ρA(λ)

2m

λ2 + m2
= πmρA

0 + ρA
1 mF (m) + ρA

2 mG(m) + O(m2) (29)
∫

dλ ρA(λ)
4m2

(λ2 + m2)2
= ρA

0
πm

m
+ 2ρA

1 + ρA
2

mπm

2
+ O(m2) (30)

where

πm = 2 tan−1

(
Λ
m

)
, F (m) = log

[
Λ2 + m2

m2

]
, G(m) = Λ − m

2
πm, (31)

n is a positive integer, and Λ is some ultra-violet cut-off. Terms which vanish as
Λ → ∞ are not shown here.

3

positive & even in m if Nf is even

non-zero modes
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in the limit that m → 0, we obtain

lim
m→0

lim
V →∞

〈ψ̄(x)ψ(x)〉 = lim
m→0

Nf

[
πρm(0) + lim

V →∞

〈NR+L(A)〉A
mV

]
, (22)

where

Pm(A) = e−SY M (A)(−m)Nf NR+L
∏

λn>0

(λ2
n + m2). (23)

Therefore, if Nf is even, Pm(A) is an even function of m, and is positive for m %= 0.
Similarly we obtain

1
V

∫
d4xd4y〈tr SA(x, y)SA(y, x)〉A =

〈 1
m2V

NR+L(A)

+
∫

dλ ρA(λ)
2(m2 − λ2)
(λ2 + m2)2

〉

A
(24)

1
V

∫
d4xd4y〈tr SA(x, x) tr SA(y, y)〉A = V

〈( 1
mV

NR+L(A)

+
∫

dλ ρA(λ)
2m

λ2 + m2

)2〉

A
(25)

1
V

∫
d4xd4y〈tr γ5SA(x, y)γ5SA(y, x)〉A =

〈 1
m2V

NR+L(A)

+
∫

dλ ρA(λ)
2

λ2 + m2

〉

A
(26)

1
V

∫
d4xd4y〈tr γ5SA(x, x) tr γ5SA(y, y)〉A =

〈N2
R−L(A)〉A
m2V

=
N2

f 〈Q2(A)〉A
m2V

(27)

where NR−L = NR − NL = NfQ for the topological charge Q.

1.3 Chiral symmetry restoration at high temperature and
density of eigenvalues

To constrain the form of the eigenvalue density from the chiral symmetry, we expand
ρA(λ) as

ρA(λ) =
∞∑

n=0

ρA
n

λn

n!
= ρA

0 + ρA
1 λ + ρA

2
λ2

2!
+ · · · . (28)

We here assume that ρA can be expanded at λ = 0.
Using this expansion, we have

∫
dλ ρA(λ)

2m

λ2 + m2
= πmρA

0 + ρA
1 mF (m) + ρA

2 mG(m) + O(m2) (29)
∫

dλ ρA(λ)
4m2

(λ2 + m2)2
= ρA

0
πm

m
+ 2ρA

1 + ρA
2

mπm

2
+ O(m2) (30)

where

πm = 2 tan−1

(
Λ
m

)
, F (m) = log

[
Λ2 + m2

m2

]
, G(m) = Λ − m

2
πm, (31)

n is a positive integer, and Λ is some ultra-violet cut-off. Terms which vanish as
Λ → ∞ are not shown here.

3

(possible, at least, at T > Tc ) 

Expansion V → ∞

Integral

UV cut-off
We consider the consequence from the fact that the chiral symmetry is restored

at T ≥ Tc. From the chiral condensate, we have

lim
m→0

lim
V →∞

〈ψ̄ψ〉 = lim
m→0

Nf

[
2 tan−1

(
Λ
m

)
〈ρA

0 〉A + lim
V →∞

〈NR+L(A)〉A
mV

]
.

(32)

Since both terms are positive semi-definite, we need to have

〈ρA
0 〉A = m2ρ̄0, (33)

lim
V →∞

1
V
〈NR+L(A)〉A = m2N̄1 (34)

Note that in the chiral symmetric phase, 〈ψ̄ψ〉 is an odd function in m. This
condition is satisfied in the above condition.

We then consider the chiral susceptibilities defined by

χσ−π =
1
V

∫
d4x d4y {〈σ(x)σ(y)〉 − 〈πa(x)πa(y)〉} (35)

χη−δ =
1
V

∫
d4x d4y {〈η(x)η(y)〉 − 〈δa(x)δa(y)〉} , (36)

which can be expressed as

χσ−π = Nf

〈
V Nf

(
1

mV
NR+L(A) +

∫
dλ ρA(λ)

2m

λ2 + m2

)2

− 1
m2V

2NR+L(A) −
∫

dλ ρA(λ)
4m2

(λ2 + m2)2
〉

A
(37)

χη−δ = Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} +
∫

dλ ρA(λ)
4m2

(λ2 + m2)2

〉

A

= Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} + ρA
0

πm

m
+ 2ρA

1 + O(m2)
〉

A

.(38)

Note that a for π and δ is not summed here.
Using the conditions that

lim
m→0

lim
V →∞

χσ−π = lim
m→0

lim
V →∞

χη−δ = 0, (39)

we obtain

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= 2N̄1 + lim

m→0
〈2ρA

1 〉A (40)

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= V Nf

〈{ 1
mV

NR+L(A)

+ πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
. (41)

The first equation leads to

〈Q2(A)〉A =
m2V

N3
f

[
2N̄1 + 2ρ̄1

]
+ O(1,m4V ) (42)

where we define limm→0〈ρA
1 〉A = ρ̄1. Putting this in the second equation, we obtain

lim
m→0

lim
V →∞

〈{ 1
mV

NR+L(A) + πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
= 0. (43)

4

=0, if chiral symmetry is restored,

positive semi-definite

∫
dλ ρA(λ)

2m

λ2 + m2
= πmρA

0 + O(m)

πm ≡ 2 tan−1

(
Λ
m

)
Λ

We consider the consequence from the fact that the chiral symmetry is restored
at T ≥ Tc. From the chiral condensate, we have

lim
m→0

lim
V →∞

〈ψ̄ψ〉 = lim
m→0

Nf

[
2 tan−1

(
Λ
m

)
〈ρA

0 〉A + lim
V →∞

〈NR+L(A)〉A
mV

]
.

(32)

Since both terms are positive semi-definite, we need to have

〈ρA
0 〉A = m2ρ̄0, (33)

lim
V →∞

1
V
〈NR+L(A)〉A = m2N̄1 (34)

Note that in the chiral symmetric phase, 〈ψ̄ψ〉 is an odd function in m. This
condition is satisfied in the above condition.

We then consider the chiral susceptibilities defined by

χσ−π =
1
V

∫
d4x d4y {〈σ(x)σ(y)〉 − 〈πa(x)πa(y)〉} (35)

χη−δ =
1
V

∫
d4x d4y {〈η(x)η(y)〉 − 〈δa(x)δa(y)〉} , (36)

which can be expressed as

χσ−π = Nf

〈
V Nf

(
1

mV
NR+L(A) +

∫
dλ ρA(λ)

2m

λ2 + m2

)2

− 1
m2V

2NR+L(A) −
∫

dλ ρA(λ)
4m2

(λ2 + m2)2
〉

A
(37)

χη−δ = Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} +
∫

dλ ρA(λ)
4m2

(λ2 + m2)2

〉

A

= Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} + ρA
0

πm

m
+ 2ρA

1 + O(m2)
〉

A

.(38)

Note that a for π and δ is not summed here.
Using the conditions that

lim
m→0

lim
V →∞

χσ−π = lim
m→0

lim
V →∞

χη−δ = 0, (39)

we obtain

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= 2N̄1 + lim

m→0
〈2ρA

1 〉A (40)

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= V Nf

〈{ 1
mV

NR+L(A)

+ πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
. (41)

The first equation leads to

〈Q2(A)〉A =
m2V

N3
f

[
2N̄1 + 2ρ̄1

]
+ O(1,m4V ) (42)

where we define limm→0〈ρA
1 〉A = ρ̄1. Putting this in the second equation, we obtain

lim
m→0

lim
V →∞

〈{ 1
mV

NR+L(A) + πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
= 0. (43)

4

NR+L(A) ∝ (mNf )NR+L(A)

much more suppressed.
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Other conditions from

We consider the consequence from the fact that the chiral symmetry is restored
at T ≥ Tc. From the chiral condensate, we have

lim
m→0

lim
V →∞

〈ψ̄ψ〉 = lim
m→0

Nf

[
2 tan−1

(
Λ
m

)
〈ρA

0 〉A + lim
V →∞

〈NR+L(A)〉A
mV

]
.

(32)

Since both terms are positive semi-definite, we need to have

〈ρA
0 〉A = m2ρ̄0, (33)

lim
V →∞

1
V
〈NR+L(A)〉A = m2N̄1 (34)

Note that in the chiral symmetric phase, 〈ψ̄ψ〉 is an odd function in m. This
condition is satisfied in the above condition.

We then consider the chiral susceptibilities defined by

χσ−π =
1
V

∫
d4x d4y {〈σ(x)σ(y)〉 − 〈πa(x)πa(y)〉} (35)

χη−δ =
1
V

∫
d4x d4y {〈η(x)η(y)〉 − 〈δa(x)δa(y)〉} , (36)

which can be expressed as

χσ−π = Nf

〈
V Nf

(
1

mV
NR+L(A) +

∫
dλ ρA(λ)

2m

λ2 + m2

)2

− 1
m2V

2NR+L(A) −
∫

dλ ρA(λ)
4m2

(λ2 + m2)2
〉

A
(37)

χη−δ = Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} +
∫

dλ ρA(λ)
4m2

(λ2 + m2)2

〉

A

= Nf

〈
1

m2V
{2NR+L(A) − N3

f Q2(A)} + ρA
0

πm

m
+ 2ρA

1 + O(m2)
〉

A

.(38)

Note that a for π and δ is not summed here.
Using the conditions that

lim
m→0

lim
V →∞

χσ−π = lim
m→0

lim
V →∞

χη−δ = 0, (39)

we obtain

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= 2N̄1 + lim

m→0
〈2ρA

1 〉A (40)

lim
m→0

lim
V →∞

N3
f 〈Q2(A)〉A

m2V
= V Nf

〈{ 1
mV

NR+L(A)

+ πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
. (41)

The first equation leads to

〈Q2(A)〉A =
m2V

N3
f

[
2N̄1 + 2ρ̄1

]
+ O(1,m4V ) (42)

where we define limm→0〈ρA
1 〉A = ρ̄1. Putting this in the second equation, we obtain

lim
m→0

lim
V →∞

〈{ 1
mV

NR+L(A) + πρA
0 + ρA

1 mF (m) + ρA
2 mG(m)

}2〉

A
= 0. (43)

4

(chiral)

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5

Q(A) ∝ (mNf )Q(A) much more suppressed.

NR − NL = Q (index theorem)

lim
m→0

lim
V →∞

1
m2V

〈Q2(A)〉 = 0

c.f. 〈Q2(A)〉 ∝ mΣV at T = 0
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U(1)A susceptibility

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5

and

〈f(A)〉A =
∫

DAPm(A)f(A) (12)

Pm(A) =
1
Z

e−SY M (A) det[γµDµ(A) − m], (13)

Z =
∫

DAe−SY M (A) det[γµDµ(A) − m]. (14)

1.2 Basic formula

We now express fermion propagator in terms of eigenvalues of anti-Hermitian Dirac
operator DA ≡ γµDµ(A), which satisfies {DA, γ5} = 0 in the continuum theory.
Pairs of non-zero modes are given by

DAφn(x) = iλA
n φA

n (x), (15)
DAγ5φn(x) = iλA

n γ5φ
A
n (x), (16)

which satisfies (φn,φm) = δnm and (φn, γ5φm) = 0 for the inner product (f, g),
while zero modes satisfy DAφA

k (x) = 0 are chiral as

γ5φ
A
k (x) = φA

k (x) (k = 1, 2, · · · , NR(A)), (17)
γ5φ

A
k (x) = −φA

k (x) (k = NR(A) + 1, · · · , NR(A) + NL(A)), (18)

where (φk,φl) = δkl. In terms of these eigenvalues and eigenfunctions, the fermion
propagator can be expressed as

SA(x, y) = − 1
m

∑

k

φA
k (x)φA

k (y)† +
∑

λn>0

[φA
n (x)φA

n (y)†

iλA
n − m

+
γ5φA

n (x)φA
n (y)†γ5

−iλA
n − m

]

(19)

Using this representation, the chiral condensate becomes

〈ψ̄(x)ψ(x)〉 = −Nf

V

〈
− 1

m

∑

k

(φk,φk)

+
∑

λn>0

[
1

iλA
n − m

(φA
n ,φA

n ) +
1

−iλA
n − m

(γ5φ
A
n , γ5φ

A
n )

]〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2

1
V

∑

λn>0

δ(λ − λA
n )

〉

A

= Nf

〈NR+L(A)
mV

+
∫ ∞

0
dλ

2m

λ2 + m2
ρA(λ)

〉

A
(20)

where NR+L = NR + NL and

ρA(λ) =
1
V

∑

λn>0

δ(λ − λA
n ) (21)

is the density of eigenvalues. Using the definition

2πδ(λ) = lim
m→0

[
1

iλ + m
+

1
−iλ + m

]

and assuming regularity of
ρm(λ) ≡ 〈ρA(λ)〉A

2

eigenvalue density

linear term is absent !

Remark Effect of “anomaly” is represented by “index theorem”.
This can be seen in the next section.

lim
m→0

lim
V →∞

1
m2V

〈Q2(A)〉 = 0

lim
m→0

χπ−η = 0

but

This does NOT necessarily mean 
the recovery of U(1) symmetry.
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3. Lattice QCD with overlap fermions
Ward-Takahashi identities under “chiral” rotation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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d4x {J0
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6
non-anomalous WTI O = S0(y)P a(z) or Sa(y)P 0(z) and δa

while for O = S0(y)P a(z) and δa with a != 0, or for O = Sa(y)P 0(z) and δa with
a != 0, we have non-anomalous WT identities as

2
〈

m

∫
d4x P a(x)S0(y)P a(z) + P a(y)P a(z) − S0(y)S0(z)

〉
= 0, (70)

2
〈

m

∫
d4x P a(x)Sa(y)P 0(z) + P 0(y)P 0(z) − Sa(y)Sa(z)

〉
= 0. (71)

2.2 Spectral decomposition and correlation functions

The fermion propagator for the massive overlap fermion is given by

SF (x, y) = [D − mF (D)]−1 (x, y) (72)

where D satisfies the GW relation and D† = γ5Dγ5. Its eigenvalues (Dφn = λnφn)
satisfies

λn + λ̄n = aRλ̄nλn, (73)

where λn is in general complex and therefore φ†
nD† = φ†

nλ̄n. Note that there exist
real eigenvalues, λ = 0 and λ = 2/(Ra), whose eigenfunctions are chiral, while other
eigenfunctions with complex eigenvalues satisfy (φn,φm) = δnm and (φn, γ5φm) = 0,
since

(
λ̄n + λm − Raλ̄nλm

)
(φn, φm) = 0 (74)

(
λ̄n − λm

)
(φn, γ5φm) = 0. (75)

Note also that Dφn = λnφn leads to Dγ5φn = λ̄nγ5φn since the GW relation (60)
and its consequence (73) give

Dγ5φn = − λ

1 − Raλ
γ5φn = λ̄nφn. (76)

From the above properties, the fermion propagator can be expressed in terms of
these eigenvalues and eigenfunctions as

SF (x, y) =
∑

n

[
φn(x)φ†

n(y)
fmλn − m

+
γ5φn(x)φ†

n(y)γ5

fmλ̄n − m

]

+
∑

k

1
−m

φk(x)φ†
k(y) +

∑

K

aR

2
φK(x)φ†

K(y) (77)

where fm = 1 + maR/2.
Using this expression, the correct chiral condensate for a given configuration A

is exprese as

1
V

∫
d4xS0(x) =

Nf

mV

∑

k

(φk,φk)

− Nf

V

∑

n




1 − R

2
aλn

fmλn − m
(φn,φn) +

1 − R

2
aλ̄n

fmλ̄n − m
(γ5φn, γ5φn)





=
Nf

mV
NR+L(A) +

Nf

V

∑

n

2m

Z2
mλ̄nλn + m2

(
1 − R2

4
a2λ̄nλn

)
,

(78)
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where NR+L(A) is the number of zero-modes and Z2
m = 1− (ma)2

R2

4
. Introducing

the following density of λ̄λ

ρA(λ) ≡ 1
V

∑

n

δ(λ −
√

λ̄nλn), (79)

we finally obtain

〈S0(x)〉 =
Nf

mV
〈NR+L(A)〉A +

Nf

Zm

∫ ∞

0
dλ 〈ρA(λ)〉A

2mR

λ2 + m2
R

(
1 − R2

4
a2λ2

)
,

(80)

where mR = m/Zm. Except factors Zm and 1 − R2

4
a2λ2, both of which become

unity in the continuum limit or at λ = 0, the formula is same as in the continuum
case.

Similarly, we have

1
V

∫
d4xd4y × 〈tr F (D)SA(x, y)F (D)SA(y, x)〉A

=
〈 1

m2V
NR+L(A) +

2
Z2

m

∫
dλ ρA(λ)

m2
R − λ2gm(λ2)
(λ2 + m2

R)2
〉

A
(81)

where

gm(λ2) = g0(λ2)
1 +

R2

2
m2a2

Z2
m

, g0(λ2) = 1 − R2

4
λ2a2 (82)

and

1
V

∫
d4xd4y × 〈tr F (D)SA(x, y) tr F (D)SA(y, x)〉A

= V
〈( 1

mV
NR+L(A) +

1
Zm

∫
dλ ρA(λ)g0(λ2)

2mR

λ2 + m2
R

)2〉

A
(83)

1
V

∫
d4xd4y × 〈tr γ5F (D)SA(x, y)γ5F (D)SA(y, x)〉A

=
〈 1

m2V
NR+L(A) +

1
Z2

m

∫
dλ ρA(λ)

2g0(λ2)
λ2 + m2

R

〉

A
(84)

1
V

∫
d4xd4y × 〈tr γ5SA(x, y) tr γ5SA(y, x)〉A

=
〈NR−L(A)〉A

m2V
=

N2
f 〈Q2(A)〉A

m2V
(85)

where NR−L = NR − NL = NfQ for the topological charge Q. Note that 0 ≤ λ ≤
Λ = 2/(Ra).

Furtheremore, we have

Pm(A) = e−SY M (A)(−m)Nf NR+L

(
2

Ra

)Nf ND ∏

#λn>0

(Z2
mλ̄nλn + m2), (86)

which are positive definite and an even function of m for even Nf .
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Others also hold.

Result in the previous section can be rigorously derived in lattice QCD.

U(1)A susceptibility

which leads to

lim
m→0

lim
V →∞

〈( 1
mV

NR+L(A) +
1

Zm

∫
dλ ρA(λ)g0(λ2)

2mR

λ2 + m2
R

)2〉

A
= 0. (97)

Since
∫

dλ ρA(λ)g0(λ2)
2mR

λ2 + m2
R

= πmρA
0 + O(m) (98)

and 〈ρA
0 〉A = m2ρ̄0, we have

lim
m→0

lim
V →∞

〈NR+L(A)2〉A
m2V 2

= 0, (99)

from which we conclude

lim
V →∞

〈NR+L(A)2〉A
m2V 2

= O(m2). (100)

As in the continuum case, since m dependence of 〈NR+L(A)2〉A comes solely from
Pm(A), it is easy to see

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (101)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties for overlap fermions.

〈ρA
0 〉 = O(m2), (102)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (103)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2). (104)

For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (105)

at T ≥ Tc.

2.4 U(1)A symmetry with overlap quarks at finite tempera-
ture

As in the continuum case, it is enough to consider χπ−η, which is given by

lim
m→0

lim
V →∞

χπ−η = lim
m→0

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1. (106)

This result is of course consistent with the anomalous WT idenitity,

χπ−η = − 1
2V

∫
d4xd4yd4z〈J0

xS2(y)P a(z)〉

=
N2

f

V

∫
d4xd4yd4z 〈trγ5F (D)(x, x) trF (D)SF (z − y)γ5F (D)SF (y − z)〉

=
N2

f

m2V
〈N2

R−L(A)〉. (107)
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4. General cases
4-1. Higher order susceptibilities at Nf = 2

On1,n2,n3,n4 = Pn1
a Sn2

a︸ ︷︷ ︸
non−singlet

singlet︷ ︸︸ ︷
Pn3

0 Sn4
0

F ≡
∫

d4x F (x)

3 General argument for higher point functions

In this section, we try to generalize the analysis in the previous sections to higher
point functions. In particular, we consider (1) whether the non-singlet chiral sym-
metry implies the singlet chiral symmetry in odd-point functions or not, while two
give different conditions in even point functions (or not), and (2) further constraints
to the eigenvalue density from the non-singlet(or singlet) chiral symmetry in higher
point functions.

3.1 General operators and WT identities

Let consider the following general operators,

On1,n2,n3,n4 = Pn1
a Sn2

a Pn3
0 Sn4

0 , (133)

where a represents non-singlet index( a = 1, 2, 3 for Nf = 2). Using this notations,
we have

O(N)
a = {On1,n2,n3,n4 |n1 + n2 = odd, n1 + n3 = odd,

∑

i

ni = N}

O(N)
0 = {On1,n2,n3,n4 |n1 + n2 = even, n1 + n3 = odd,

∑

i

ni = N}

δaO(N)
a ∈ {On1,n2,n3,n4 |n1 + n2 = even, n1 + n3 = even,

∑

i

ni = N}

≡ O(N)

δ0O(N)
0 ∈ O(N) (134)

The question here is whether δaO(N)
a = δ0O(N)

0 = O(N) or not. Explicitly we have

δaOn1,n2,n3,n4 = −n1On1−1,n2,n3,n4+1 + n2On1,n2−1,n3+1,n4

− n3On1,n2+1,n3−1,n4 + n4On1+1,n2,n3,n4−1 (135)
δ0On1,n2,n3,n4 = −n1On1−1,n2+1,n3,n4 + n2On1+1,n2−1,n3,n4

− n3On1,n2,n3−1,n4+1 + n4On1,n2,n3+1,n4−1 (136)

Hereafter we write n = n1n2n3n4 instead of On1,n2,n3,n4 to represent an operator.
We first argue that if N is odd, |O(N)

a | = |O(N)
0 | = |O(N)|, where |O| means a

number of independent operators in O. Therefore the condition implied from the
non-singlet chiral symmetry that δaO(N)

a = 0 leads to the singlet chiral symmetry
δ0O(N)

0 = 0, since δa, as well as δ0, generate independent equations. We denote
N = 2k + 1. At k = 0, we have n0 = 1000 for O(N)

a and n0 = 0010 for O(N)
0 ,

while n0 = 0001 for O(N). At k = 1, we can add 2 once at each ni, so that we
have 4 operators for each case plus one new operator such as n̄0 = 0111, 1101 or
1110. Therefore there are 5 operators for each case at k = 1. For example, we have
1002, 1020, 1200, 3000, 0111 for O(N)

a . At k ≥ 1, we can add 2 at each ni of n0 k
times and each ni of n̄0 k− 1 times. A number of independent operators generated
by such adding is equal to a number of selecting k(or k− 1) numbers from 1, 2, 3, 4,
which is k+3C3(k+2C3). In total a number of independent operators at N = 2k + 1
is given by

k+3C3 +k+2 C3 =
(k + 2)(k + 1)(2k + 3)

3!
(137)

for O(N)
a , O(N)

0 or O(N). This proves |O(N)
a | = |O(N)

0 | = |O(N)|.
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Operator sets

WT identities

δaO(N)
a = 0 δ0O(N)

0 = 0

equivalent

N: odd

N: even
δaO(N)

a = 0 δ0O(N)
0 = 0
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4-2. Nf = 3 case

Non-singlet Chiral WT identities

δ8S3 = 2d383P3, δ8P3 = −2d383S3

η′π0

Singlet WT identity is satisfied at this order.

Effects should appear at 3-pt functions.

Pa(x)Pa(y) − S0(x)S0(y) = 0 P0(x)P0(y) − Sa(x)Sa(y) = 0

special at Nf = 3

δ8(P3(x)S3(y)) = 2d383(P3(x)P3(y) − S3(x)S3(y)) = 0

Zero-modes ∝ (mNf )Q

P3(x)P3(y) − P0(x)P0(y) = 0
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5. Conclusion
Conclusion If chiral symmetry is restored at T > Tc ,

Since 〈ρA
0 〉A = O(m2), we have

lim
m→0

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= 0, (44)

which gives

lim
V →∞

〈N2
R+L(A)〉A
m2V 2

= O(m2). (45)

Since NR+L(A) is independent on m, m dependence of 〈N2
R+L(A)〉A comes solely

from Pm(A). Therefore it is easy to see that

lim
V →∞

〈NR+L(A)〉A
m2V

= O(m2), (46)

which implies N̄1 = 0.
In conclusion, the chiral symmetry restoration at T ≥ Tc leads to the following

properties.

〈ρA
0 〉 = O(m2), (47)

lim
V →∞

1
m2V

〈NR+L(A)〉A = O(m2), (48)

lim
V →∞

N3
f

m2V
〈Q2(A)〉A = 2ρ̄1 + O(m2), (49)

where limm→0〈ρA
1 〉A = ρ̄1. For the eigenvalue density, we have

lim
m→0

ρm(λ) = ρ̄1λ + O(λ2) (50)

at T ≥ Tc.

1.4 U(1)A symmetry at finite temperature

We now consider the U(1)A symmetry at finite temperature.
Since χσ−π = χη−δ = 0 in the chiral symmetric phase at T ≥ Tc, U(1)A suscep-

tibilities, χσ−δ, χπ−δ and χσ−η, are all related to χπ−η as

χσ−δ = χπ−η + χη−δ + χσ−π = χπ−η (51)
χπ−δ = χπ−η + χη−δ = χπ−η (52)
χσ−η = χπ−η + χσ−π = χπ−η, (53)

while χπ−η can be evaluated as

χπ−η = lim
V →∞

N4
f

m2V
〈Q2(A)〉A = 2Nf ρ̄1 + O(m2). (54)

Since there is no reason for the right-hand side to vanish at T ≥ Tc, the chiral sym-
metry restoration does NOT necessarily imply the vanishing U(1)A susceptibilities,
contrary to the claim by Cohen.

It is now clear that, for a recovery of the U(1)A symmetry, we need to have

lim
V →∞

N4
f

m2V
〈Q2(A)〉A = O(m2). (55)

From the second equation in (54), and positivities of ρ̄1, we conclude that

ρ̄1 = 0, (56)

which gives

lim
m→0

ρm(λ) = 〈ρA
2 〉A

λ2

2!
+ O(λ3) (57)

for the eigenvalue density at T ≥ Tc.

5
Work in progress constraints from higher order susceptibilities

constraint on eigenvalue density

?
eigenvalues of Dirac operator 
have a gap near zero. 

ρ(λ) = 0 at |λ| ≤ λc

ρ(λ)

|λ|λc

lim
m→0

χπ−η = 0

δaO(N)
a = 0chiral symmetry
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