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Dense matter is fascinating!

—3
np 2 MAgep
Intrinsically interesting Very important for

probe of QCD neutron star physics

Finite density driven by a chemical potential for quark (~baryon) number
1~,0
Lqcp = Loep + ppy ¢

Many spectacular phenomena seen using weak-coupling
methods, which apply for g /Agcp — o0

For ps/Agcp ~ 1, not much is known reliably from first principles.
Normally, this is where one would turn to lattice Monte Carlo methods.



Dense matter is fascinating!

—3
np 2 MAgep

Intrinsically interesting Very important for
probe of QCD neutron star physics

Finite density driven by a chemical potential for quark (~baryon) number
1~,0
Lqcp = Loep + ppy ¢

Many spectacular phenomena seen using weak-coupling
methods, which apply for g /Agcp — o0

For ps/Agcp ~ 1, not much is known reliably from first principles.
Normally, this is where one would turn to lattice Monte Carlo methods.

Lattice does not work at finite 5!



What makes Monte Carlo methods tick

_ JdAudpdpe SR04, 4, )
[ dA, dpdipe=SIAn -0

m %/dAudet(lD)e_S[A“]O[Au]

Monte Carlo method: generate random A, configurations using
det(]D)eSHAx

as a probability distribution, then evaluate the integral.
Works fine as long as distribution is > 0!
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m %/dAudet(lD)e_S[A“]O[Au]

Monte Carlo method: generate random A, configurations using
det(]D)eSHAx

as a probability distribution, then evaluate the integral.
Works fine as long as distribution is > 0!
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Eigenvalues of )
come in A, A" pairs

QCD at yp=0: V51D v5 = lDT —

X
So then det() ) = H)\i >0 <



The sign phase problem

Once yp > 0, y° symmetry breaks,
and det (D) becomes complex,
with a rapidly fluctuating phase.

Can’t use importance
sampling anymore!

No known way to generically dodge
this kind of problem.

0) =5 [ dAe 54 dex(P)OLA,]

If det(D) is part of the observable, but then answer is result Lo
of many cancellations between phases, difficulty ~ e# i



The sign phase problem

Once yp > 0, y° symmetry breaks,
and det (D) becomes complex,
with a rapidly fluctuating phase.

Can’t use importance
sampling anymore!

No known way to generically dodge
this kind of problem.

0) =5 [ dAe 54 dex(P)OLA,]

If det(D) is part of the observable, but then answer is result Lo
of many cancellations between phases, difficulty ~ e# i

But maybe one just needs a clever algorithm to sum up the fluctuating phases?

Well...
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So how to make progress?
(1) Do net look for general solutions: exploit specifics of theory:.

(2) Our approach: Exploit QCD details, but not in N, = 3 world - too hard!

Go to the large N limit!

Good (10-30%) approx. to real world for many observables at yp= 0.

Probably much less close to our world for yg> 0, but such is life.
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So how to make progress?
(1) Do net look for general solutions: exploit specifics of theory.

(2) Our approach: Exploit QCD details, but not in N, = 3 world - too hard!

Go to the large N limit!

Good (10-30%) approx. to real world for many observables at yz= 0.

Probably much less close to our world for yg> 0, but such is life.

Large N theories are simpler, and can be
attacked by using 'large N orbifold equivalence’

| easier to squeeze’...
N /

Better
picture

The idea: find sign-problem-free theory which is
‘orbifold-equivalent’ to large N QCD at yp>0.



e.g.: Hands et al +
many others

First: Do sign-problem-free theories exist?

Yes!

1. QCD with N=2 colors, and
2. QCD with adjoint representation quarks.

75lD e = lDT still broken when y5 >0

But now fermion representation is (pseudo)-real...

Cvs P (Cys) ' =D*

No sign problem!

> additional symmetry:

even when yp>0!



e.g.: Hands et al +
many others

First: Do sign-problem-free theories exist?

Yes!

1. QCD with N=2 colors, and
2. QCD with adjoint representation quarks.

75& e = lDT still broken when y5 >0

But now fermion representation is (pseudo)-real...

additional symmetry: _ .
- e Csp(Cys) T =D

even when yp>0!

No sign problem!

But 1 & 2 have a number of major differences from N=3 QCD...

Goal is to use large N to get something equivalent to QCD.



Second: lightning review of large N
‘t Hooft large N limit: N — o0, keeping ¢° N fixed, N rhixed

Non-planar diagrams and quark loops suppressed

>y ~1/NY2 >< =0 X>< jif]]\\[{ N2

Mesons are stable, weakly-interacting; meson loops suppressed.




Second: lightning review of large N
‘t Hooft large N limit: N — o0, keeping ¢° N fixed, N rhixed

Non-planar diagrams and quark loops suppressed

> 1 N
~1/N1/2 ~1/N L
1IN / "N N N2

Mesons are stable, weakly-interacting; meson loops suppressed.

Sign problem still present at large N.
Folklore says large N means we can set det(lD ) = 1 OK at yp=0.

But at finite g5 this is known to give wrong answers: e.g. Barbour et

spurious phase transitions! al, 1986,
Stephanov 1996
Setting det (/D)) = 1 by hand is a mutilation of the theory...

Expect det(JD)to continue to have a fluctuating phase
even at large N, so sign problem is still there...



The proposal

SU(N) gauge theory + Ny
fundamental fermions

T

¢

T

AC, Hanada, Robles-Llana, PRL 2011
AC, Tiburzi 1103.1639

SO(2N) gauge theory + Nf
fundamental fermions

T

QCD Orbitfold equivalence easier theory

Equivalence can be made to hold even when y5>0.

Use deformation approach due to Unsal+Yaffe

The SO(2N) theory does not have a sign problem at finite ys.

Make sure D has enough symmetry, e.g. C' ”y5lD (C ’75)_1 = lD :



A quick look at SO gauge theories

Ny

1 y —

o — 4_g2trF,ul/F'u - E wa(ﬂ _|_m_|_:uB’y4)¢a
a=1

Looks a lot like QCD: has both mesons and baryons
Still have SU(Ny¢)r x SU(Nyf)r x U(1)p symmetry.

. Witten & Coleman,
But 50 1? real, so Flavor symmetry  Peskin, 1980
all fermion reps -’ enhanced to SU(2N)

are real
(Y1) #0
SU(QNJC) — SO(QNJB)

N7 —1 4+ Ny(Ny—1)
NG bosons
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Two ways to make color singlets in SO(2N)

QCD: ¢,y NF—1 pions, P=-1

+ all other mesons

SO(2N): all of above, + 1. Cy°epp, Np(N; — 1)

Baryonic pions, P=+1

Will refer to these NGBs with U(1)s charge as “bpions’.

+ theory also bmeson relatives of the other usual mesons

Ex.: bp mesons

In what sense can such a weird theory be “equivalent” to QCD?




Kachru, Silverstein 1998 Kovtun, Unsal,

Orbifold Equivalence Yaffe, 2003-4
Pick “mother” theory with _|_ Pick a discrete cyclic subgroup
a global symmetry G. Jr C G

Set to zero all degrees of
freedom in the mother not
invariant under Zr C G

The orbifold projection:

ZI‘ orbifold “daughter theory”

If /.p symmetry is not spontaneously broken

Correlation functions of “neutral” operators in mother and
daughter theories will coincide in the large N limit.



Kachru, Silverstein 1998 Kovtun, Unsal,

Orbifold Equivalence Yaffe, 2003-4
Pick “mother” theory with _|_ Pick a discrete cyclic subgroup
a global symmetry G. Jr C G

Set to zero all degrees of
freedom in the mother not
invariant under Zr C G

The orbifold projection:

ZI‘ orbifold “daughter theory”

If /.p symmetry is not spontaneously broken

Correlation functions of “neutral” operators in mother and
daughter theories will coincide in the large N limit.

Existing proofs of large N equivalence require
Truth in some generalizations for this application: no
advertising:  general proof yet that necessary conditions above
are also sufficient for fund. fermion case.



From SO(2N) to SU(N) QCD in one slide

How does one connect an SO(2N) gauge theory to an SU(N) theory?

(1) Change the gauge group: project onto SU(N) subgroup

0 1
J:<_1 O)ESO(QN) AM—>JAMJT:AM

(2) The bmesons better get killed by projection...
w=e"? ¢ Ul Y— wJY =1

Result of orbifold: £S O _ \ £S U



Survivors of projection Victims of projection

All gauge-invariant operators in

pure-glue sector of SO theory All bmeson operators

All meson operators

neutral sector in SO non-neutral sector

Operators of the form wT@D have Z charge -1

Projection sets to zero all degrees of freedom not invariant under a9

Baryons: orbifold prescription still needs to be worked out! AC Mike Blake,
1203. XXXX
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All gauge-invariant operators in

pure-glue sector of SO theory All bmeson operators

All meson operators

neutral sector in SO non-neutral sector

Operators of the form QpT@D have Z charge -1

Projection sets to zero all degrees of freedom not invariant under Lio

Baryons: orbifold prescription still needs to be worked out! AC Mike Blake,
1203. XXXX
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Cartoon picture of orbifold equivalence

Mother: X =

m = meson
ml

b = bmeson

~1/N ~1/N ‘ Discard
bmesons
Daughter: ><:X+ m
~1/N ~1/N ~1/N

Processes in Mother not possible in Daughter:

m m =2
______ Not allowed if 7 b ™/ Allowed but
b U(1)g unbroken . b. / suppressed

~-"



The good news

No bmeson condensation at yp=0.  Vafa-Witten theorem

SO theory should be large N equivalent to QCD at yz=0

In fact, can show that there is no bmeson

condensation at least for yp < ms/2. Using XPT analysis

So at least up to gp<mz/2, expect equivalence to hold.



The good news

No bmeson condensation at yp=0.  Vafa-Witten theorem

SO theory should be large N equivalent to QCD at yz=0

In fact, can show that there is no bmeson

condensation at least for yp < ms/2. Using XPT analysis

So at least up to gp<mz/2, expect equivalence to hold.

But (in principle) large N QCD has a sign problem for any yz>0 !

So orbifold equivalence gives a way to dodge
the sign problem at least for yp< my/2.

Already enough to think about physics at small /T - see Hanada-Yamamoto 2011

But we need to go past yz< my/2 to study nuclear matter...
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The bad news

Once yp> my/2 bpions condense : (Y Cy°) £ 0

Equivalence is lost for yg> my /2!

-

LT

EPIC FAILURE

Somatimes them's N0 sucite




AC, M. Hanada, D. Robles-Llana, PRL2011

The propos a] AC, B. Tiburzi 1103.1639

SO(2N) gauge theory with SU(N) gauge theory with N

N¢flavors of fundamental flavors of fundamental

Dirac fermions Dirac fermions

— ||

|

Orbifold equivalence Large N QCD

Equivalence can be made to hold even when yg>m5/2.

=P Use deformation approach due to Unsal+Yaffe

The SO(2N) theory does not have a sign problem at finite yz.

=P Make sure D has enough symmetry, e.g.
Cys P (Cys) ™ =P~



inspired by double-

PrOteCtlng U( 1 ) B trace deformations of
Unsal and Yaffe, 2008.

We deform the SO(2N) theory so that
(1) the modified theory still maps to QCD, and
(2) prevent bpion S, = @bgC V51, condensation.
¢2q?

Lso — Lso N Sjbbsa’b

Note: deformation term orbifolds to zero.

Cartoon picture: should act like a mass term for bpions.

So system pays extra cost for condensing when C > 0...

So use deformations to discourage bpion condensation.

Next step: make sure this is more than a cartoon.



Sometimes irrelevant operators are quite relevant

Original theory: YM on lattice + naive fermions

Natural scale for physical m, on lattice: m~1/a

Symmetries: Chiral sym, doubler sym

Consequences: Doubler sym locks my of 2P-1 tastes to mphys, X-sym keeps miphys = Mbare

Deformed theory: YM + naive fermions + Wilson term

T 7Y
Enaive — Enaive + ra w@ w
Deformation breaks #
doubler symmetry

(X-sym broken too, but by tuning #1pare can tune mphys to anything.)

Doubler masses zoom off to the

natural scale m~1/a when r~1



Sometimes irrelevant operators are quite relevant

Original theory: YM on lattice + naive fermions

Natural scale for physical m, on lattice: m~1/a

Symmetries: Chiral sym, doubler sym

Consequences: Doubler sym locks my of 2P-1 tastes to mphys, X-sym keeps miphys = Mbare

Deformed theory: YM + naive fermions + Wilson term

T Th2
£naive — Enaive + ra ¢lp w
Deformation breaks #
doubler symmetry

(X-sym broken too, but by tuning mpare can tune miphys to anything.)

Doubler masses zoom off to the

natural scale m~1/a when r~1

Natural scale for meson masses: #hadron ~ Agcp

In SO theory, deformation
breaks SU(2Np symmetry
keeping mppion locked to my

For € ~ 1expect mppion to
zoom off to mMppion ~ Agcp

Of course, lattice simulations critical to better understand deformed theory



AC, B. Tiburzi,
Deformations and Effective Field Theory 10316

Hard to understand deformed theory analytically in general.
But if m,, 4/ << Agcp and € < 1, low-energy physics can be
systematically describable using effective field theory.

Here EFT is just chiral perturbation theory adapted for SO gauge theory:.

In XPT it is easiest to work with the deformations
Ny

Q:2a2 P, — wTCw
V — ST S I PT P ab a b
i N azbzzl ( ab™~ ab ab ab) Sab _ wgc,y5wb

Without deformations, the EFT has the Lagrangian

2 2
= %tr 150, 2031 AZH tr [EM + ZTMT]

Deformations induce new terms in the low-energy action...

Just have to work them out...



Two deformations

To capture effects of deformations, use spurion analysis.

Deformation is 4-quark operator, so can borrow standard techniques used
in XPT to understand e.g. finite lattice-spacing effects

V., produces just one new term in the EFT

cr FE Soiey (tr L] e [BFLEOH] 4 or [RRED] or [S1RE] )

V_produces two new terms in the EFT
Ny
e F2 Y ([SLOJlSRE] + tr]s L (st REDT)
a,b=1
Ny
- ol I Z (tr[EL(“b>ZR(ab)] —- tr[ZTL(ab)TZTR(ab)T])
a,b=1

New low-energy constants |C+4,C—, d_




Spectrum of the deformed theory

Without symmetry breaking:

Mode | Mass with V_ deformation | Mass with V., deformation
T (m2 + 4d_)'/? M
n (mz + 4d_ )"/ [
b (m2 +4c )% + 2 (m2 +4c )% 4 2p
b (m2 + 4c_ )72 — 2 (m2 + 4c,) 172 — 2




Spectrum of the deformed theory
Without symmetry breaking:

Mode | Mass with V_ deformation | Mass with V., deformation
7 (m2 + 4d_)'/? M
n’ (m7 + 4d—)1/2 i
b (m2 +4c )% + 2 (m2 +4c )% 4 2p
bT (m3 +4c )% — 2p (m3 +4c )1 — 2p

Matching to microscopic theory gives N, scaling of the new LECs

C-, ety NCO Y, d- -~ NC-I

Can also show that the sign of C in microscopic theory
controls the signs of the LECs in the EFT.

So deformations work by raising the bpion
masses, while leaving neutral-sector stuff alone.

To nail down symmetry realization pattern,
minimize effective potential in deformed theory




AC, M. Hanada, D. Robles-Llana, 2010
AC, B. Tiburzi 2011

The proposal

SO(2N) gauge theory with SU(N) gauge theory with N¢
N¢flavors of fundamental flavors of fundamental

Dirac fermions Dirac fermions

— {|

T

Orbifold equivalence Large N QCD

Equivalence can be made to hold even when yp>m/2.

=P Use deformation approach due to Unsal+Yaffe

The SO(2N) theory does not have a sign problem at finite us.

=P Make sure D has enough symmetry, e.g.
Cys P (Cys) =P~



Sign-free implementation of deformations

Deformations are four-quark operators, so must use auxiliary fields to
put them on the lattice.

Sign problem reappears if aux field implementation breaks enough symmetries!

Aux fields coupling to S, = ¢Z; C'v51)p must be complex, sign problem

For V., we found a rather baroque way to implement auxiliary
fields that avoids reintroducing the sign problem
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Sign-free implementation of deformations

Deformations are four-quark operators, so must use auxiliary fields to
put them on the lattice.

Sign problem reappears if aux field implementation breaks enough symmetries!

Aux fields coupling to S, = ¢Z; C'v51)p must be complex, sign problem

For V., we found a rather baroque way to implement auxiliary
fields that avoids reintroducing the sign problem

Fierz rearrangement: STabSab = Z (ngrqg)Q

I’
Can couple real auxiliary =17 F 7) L(1)g singlet, color tensor
fields fij to qa qa But color group is real!

Integration over f; gives original 4-quark terms

gtab G Z % fzI; fij I + icr fg ng Fqg + simﬂ?r I;cerms for
[ ] Rtels
T ab




Sign-free implementation of V. deformations

Result of integrating in auxiliary fields in flavor-singlet channel:
2 2 2
2 (fi3)"/2 4 (9i3)"/2 + (Ppuwij)" /2
C - o . — . . ) — . 5 .
F(ST "Sap — P10 P,,) wly  +icy fijbo ) +icagijbey )
1C3hyp i o Y Yy

Factors of i break Cy> symmetry.
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Sign-free implementation of V. deformations

Result of integrating in auxiliary fields in flavor-singlet channel:
2 2 2
2 (fi3)"/2 4 (9i3)"/2 + (Ppuwij)" /2
C - o . — . . ) — . 5 .
F(ST "Sap — P10 P,,) wly  +icy fijbo ) +icagijbey )
1C3hyp i o Y Yy

Factors of i break Cy> symmetry.

But for m, = 0, aux fields preserve CD(up,c)C~' = —D(up,c)*

Enough symmetry to ensure positivity as m, — 0 , even when ¢ >0

Einall ¥ No sign problem in the chiral limit.
mnaily.
y ¥ Large N equivalence to QCD kept past yp=1/2

The same trick does not work for V.. Are there other tricks that do?



Summary and open questions

Using SO theory, we can dodge sign problem even past 1, /2.

Sign-quenching should be a good
approximation for light quarks.

Vanishing of sign problem as m, — 0



Summary and open questions

Using SO theory, we can dodge sign problem even past 1, /2.

Sign-quenching should be a good
approximation for light quarks.

Vanishing of sign problem as m, — 0

Does equivalence hold through nuclear matter transition?

- Do bmesons with charge /mass
less than lightest baryons exist,
even in deformed theory?

- If so, expect condensation for big
enough p3, killing equivalence.

We need non-perturbative tests!
Lattice, AdS/CFT, ...

To do:

Extend equivalence proofs, look for sign-free way to work with V.,
try to get away from chiral limit, try to dodge other sign problems,...



Phase diagram of the V.-deformed theory

4f




Phase diagram of the V.-deformed theory

7& 0, <77,> =0
— (0, (775 =l
#0,(n") #0

Exotic metastable

phase




Orbifold equivalence past yg= #r/2

With both deformations, the SO theory can be forced
to stay in a U(1)p-unbroken phase past /g = 117/2.

The correlation functions of neutral operators are
identical with both deformations in the normal phase.

The V_-deformed theory has an exotic phase with 7’-
condensation. This phase is always metastable in our analysis.



Orbifold equivalence past yg= #r/2

With both deformations, the SO theory can be forced
to stay in a U(1)p-unbroken phase past /g = 117/2.

The correlation functions of neutral operators are
identical with both deformations in the normal phase.

The V_-deformed theory has an exotic phase with 7’-
condensation. This phase is always metastable in our analysis.

At level of EFT, large N-equivalence is ‘obvious”:

UNy)L x U(Np)r _ SU(2Ny)
U(Ny)v SO(2Ny)

At large N, neutral correlators in SU(2Ng/SO(2Np) EFT with given
LECs trivially coincide with correlators computed in an SU(Ny) EFT
with the same LECs, so long as U(1)p is not broken.



