Adams and Hoelbling fermions: numerical properties

Philippe de Forcrand ETH Zürich & CERN & YITP

with Aleksi Kurkela (McGill) & Marco Panero (Helsinki)

arXiv:1202.1867, Feb. 9, 2012

ΞTH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

- Light u, d quarks needed to simulate correct physics \rightarrow expensive
- Cost-saving: staggered fermions (1/4 d.o.f.)

$$S_{F} = \sum_{x} \bar{\chi}(x) \sum_{\mu} \eta_{\mu}(x) (U_{\mu}(x)\chi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu})\chi(x-\hat{\mu})) + m_{q} \sum_{x} \bar{\chi}(x)\chi(x)$$

 $\eta_{\mu}=\pm 1;\,\{\gamma_{\mu},\gamma_{\nu}\}=2\delta_{\mu\nu}~\rightarrow~\prod_{4}\eta=-1$ around any plaquette

• Drawback: $N_f = 4$ (degenerate when a = 0) "tastes" $\rightarrow \sqrt{\det(D_{st})}$ "rooting is evil" Mike Creutz

- non-locality?
- 't Hooft vertex, $U(1)_A$ breaking?
- staggered fermions "don't feel the topology"
- No quartet of low-lying eigenvalues \leftrightarrow no index theorem
- Adams to the rescue: $N_f = 2$ staggered overlap fermions

0912.2850, 1008.2833 1009.5362

```
• Hoelbling: N<sub>f</sub> = 1
```

Construction

Two ingredients:

- 1: taste-dependent mass term (cf. Wilson term)
 - \implies split tastes into several branches fine-tune for massless limit
- 2: plug into overlap (cf. Neuberger)
 - \implies eliminate fine-tuning, etc.. large computational overhead

Look at 1 then 2

Possible mass terms

Golterman & Smit (1984)

1	<mark>0</mark> -link
γ_{μ}	1-link
$\gamma_{\mu}\gamma_{\nu}$	<mark>2</mark> -link
γμγνγρ	<mark>3</mark> -link
Y1 Y2 Y3 Y4	4-link

• 1-link and 3-link do not satisfy γ_5 -hermiticity \rightarrow determinant *complex*

- can be fixed with 2 conjugate copies, ie. doubling N_f
- 1-link: cancellations between kinetic & mass terms free spectrum on a circle!

0-link = KS; 2-link = Hoelbling; 4-link = Adams

Notation: 0-link \rightarrow *m*, 2-link \rightarrow *M*_{Hoelbling}, 4-link \rightarrow *M*_{Adams} \propto $\Gamma_{55}\Gamma_5$

• NB. Also can multiply above mass terms by $\Gamma_{55} \equiv (-)^{\chi}$?

Ph. de Forcrand

Free spectra and taste reduction I

Free spectra and taste reduction II

• Select one branch by *x*-shift, ie. additive mass renormalization (cf. Wilson) Other branch(es) have masses O(1/a), ie. doublers

 \Rightarrow can trade $\Gamma_5 = \gamma_5 \otimes \mathbf{1} + \mathcal{O}(a)$ for $\Gamma_{55} = \gamma_5 \otimes \gamma_5$ *exactly* \rightarrow index theorem

Index from eigenvalue flow

- Index from flow of eigenvalues $\lambda(m)$ of $H(m) = \gamma_5(\not D + m)$
 - ullet ($ot\!\!\!/ + m_0)$ has zero-mode $|\Psi_0
 angle \, otherefore \,$ eigenvalue $\lambda(m_0)=$ 0 for $H(m_0)$
 - Perturb *m* away from $m_0 \rightarrow \text{eigenvalue displaced by } \langle \Psi_0 | \gamma_5(m-m_0) | \Psi_0 \rangle$ $\lambda(m) = \pm (m-m_0) \text{ (ie. crossing)}$ **IF** $\langle \Psi_0 | \gamma_5 | \Psi_0 \rangle = \pm 1, \text{ ie. } | \Psi_0 \rangle \text{ chiral}$
- Alternative: can also consider flow for $\hat{H}(\rho) = \Gamma_{55}(\not \! D_{st} + \rho M_{Adams})$

Adams' original proposal

• \mathcal{D}_{st} has near-chiral, near-zero modes • $M_{Adams} = \Gamma_{55}\Gamma_5 \rightarrow \text{perturbation } \rho\Gamma_5 \approx \rho\gamma_5 \otimes \mathbf{1}$

"Classic" versus "original" ?

Comparing two eigenvalue flows

Adams' original

Ph. de Forcrand

YITP, Feb. 2012

Adams & Hoelbling fermions

Index theorem

• Cold configuration: agreement with analytic result

• Cooled Q = 1 instanton: $N_f \times Q$ crossings

Ph. de Forcrand

YITP, Feb. 2012

Adams & Hoelbling fermions

Effects of gauge field fluctuations

• $\beta = 6.0$, Q = 1: eigenvalue gap closes, esp. Adams

Effects of gauge field fluctuations

- The width of the spectrum fluctuates (shrinks)
 - \rightarrow fine-tuning for massless quarks
- The gap in the spectrum fills up
 - $\rightarrow\,$ distinction between light modes and doublers blurred

Eigenvalue spectra: Adams vs Hoelbling, 8⁴

Ph. de Forcrand

YITP, Feb. 2012

Adams & Hoelbling fermions

Usefulness

Superior robustness of Hoelbling fermions: 2-link vs 4-link transporters

Can always smear links to suppress fluctuations: Thanks Stephan Dürr

Pion mass

- Compute quark propagator G(x, y, z, t) from point source:
 - $16^3 \times 32$ lattices, $\beta = 6.0$ quenched
 - Form $\vec{p} = \vec{0}$ meson correlator (connected diagram only) $C(t) = \sum_{xyz} G(x, y, z, t) \Gamma_{55} G(x, y, z, t)^{\dagger} \Gamma_{55} = \sum_{xyz} |G(x, y, z, t)|^2$
 - Look for effective mass plateau \rightarrow (lightest) pion mass (am_{π})
- Monitor $(am_{\pi})^2$ vs (am_q) : PCAC + additive mass renormalization

Pion correlator

Pion mass vs m_a

Pion correlator Hoelbling

Overlap construction

• Just like Neuberger:
$$D_{sov} = 1 + \gamma_5^{\prime\prime} \operatorname{sign}(H(-m_0))$$

with " $\gamma_5''=\Gamma_{55}=(-)^{x+y+z+t}$ (need " $\gamma_5''^2=1)$

- Potential advantages:
 - cheaper (4 times fewer d.o.f. per site)
 - more robust ?

And reduces $N_f = 4$ to $N_f = 2$ tastes without fine-tuning

N.B. mo is really p in Adams' proposal [no mass shift]

Free field: $U_{\mu}(x) = \mathbf{1} \ \forall \mathbf{x}, \mu$

Spectrum of kernel: $\gamma_5 H_W(m_0 = -1)$ and $\gamma_5 H_{Adams}(m_0 = -1)$

 $\gamma_5 \text{sign}(H) = \frac{D}{\sqrt{D^{\dagger}D}}$ projects eigenvalues of $D = \gamma_5 H$ on unit circle

Adams: two low-*p* eigenmodes projected to -1, two projected to $+1 \Rightarrow N_f = 2$

Adams comparable to Neuberger although kernel less local (4-link)

Adams comparable to Neuberger although kernel less local (4-link)

Cost of applying operator

- Multiplication by D: about 2 times faster for Adams (no Dirac indices)
- Sign(*H*) [using CG, no deflation]:
 - about 8 times faster for Adams on easy cases
 - about 2-3 times faster on hard cases

Can optimize m_0 and ρ in Adams' operator: not exploited yet

Also:

improved kinetic operator, link smearing (kinetic and/or mass), deflation, preconditioning, ...

Cost of inversion: compare with Neuberger

Apples with apples:

- same gauge field (12⁴, β = 6.0)
- same basic algorithm (CG inner, CG outer)

Net CPU gain: factor 2-3 over Neuberger...

Cost of inversion: compare with Neuberger

Adams versus Neuberger

Ph. de Forcrand

YITP, Feb. 2012

Conclusions

- Index theorem, overlap etc.. work as advertised
- Compare taste-dependent mass terms *exhaustively* first then try overlap
- Here: 2-link (Hoelbling) more robust than 4-link (Adams)
- 2-link $\rightarrow N_f = 2$ without fine-tuning ?
- Other possibilities not yet considered?
 eg. start with 8 tastes, split 1-3-3-1

Sign problem?

Thanks Mike, Tatsu, Taro

Take Q = 1 configuration $\rightarrow 1+2+1$ real eigenvalues. Vary $m_0 : \bigotimes$

