Introduction Light

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Lattice **QCD** with physical quark masses

Christian Hoelbling Budapest-Marseille-Wuppertal collaboration

Bergische Universität Wuppertal

NTFL workshop, YITP Kyoto Feb. 22, 2012

(PLB 705:477,2011, JHEP 1108:148,2011; PLB 701:265,2011;

PRD 81:054507,2010; Science 322:1224,2008)

Christian Hoelbling (Wuppertal) Lattice **QC** with physical quark masses

Decay constants

Quark masses Kaon mixing

ixing Summary

Purpose of lattice QCE

- QCD fundamental objects: quarks and gluons
- QCD observed objects: protons, neutrons (π , K, ...)
- ! Huge discrepancy: not even the same particles observed as in the Lagrangean
- ➤ Perturbation theory has no chance
- Need to solve low energy QCD to:
 - Compute hadronic and nuclear properties "people who love QCD"
 - Masses, decay widths, scattering lengths, thermodynamic properties, ...
 - Compute hadronic background "people who hate QCD"
 - Non-leptonic weak MEs, quark masses, g-2, ...

Introduction	Light hadron spectrum	Decay constants	Quark masses

Kaon mixing

Summary

Strategy outline

Goal:

Make ab initio QCD predictions

Step 1: validate (lattice) QCD

- Compute light hadron spectrum
- Step 2: Make QCD predictions
 - Pseudoscalar decay constant ratio (CKM)
 - Light quark masses
 - Neutral kaon mixing
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Continuum extrapolation
 - Nonperturbative renormalization (where applicable)
 - Infinite volume

Introduction •••••	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
Lattice setup					

. . .

Landscape M_{π} vs. a

Introduction 000000000000000000000000000000000000	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
I atting actum					

Lattice setup

Landscape L vs. M_{π}

Introduction 000000000000000000000000000000000000	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
Lattice setup					

Lattice Setup

Landscape M_K vs. M_{π}

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
Technical details					
Action d	letails				

Goal:

- Optimize physics results per CPU time
- Conceptually clean formulation

Method:

- Dynamical 2 + 1 flavor, Wilson fermions at physical M_{π}
- 3-5 lattice spacings 0.053 fm < a < 0.125 fm
- Tree level $O(a^2)$ improved gauge action (Lüscher, Weisz, 1985)
- Tree level O(a) improved fermion action (Sheikholeslami, Wohlert, 1985)
 - Why not go beyond tree level?
 - Keeping it simple (parameter fine tuning)
 - No real improvement, UV mode suppression took care of this
 - This is a crucial advantage of our approach
- UV filtering (APE coll. 1985; Hasenfratz, Knechtli, 2001; Capitani, Durr, C.H., 2006)
- → Discretization effects of $O(\alpha_s a, a^2)$
 - ✓ We include both $O(\alpha_s a)$ and $O(a^2)$ into systematic error

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
-					

Technical details

Algorithm stability

Christian Hoelbling (Wuppertal) Lattice GCD with physical quark masses

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
Technical details					

No exceptional configs

Inverse iteration count (1000/N_{co})

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
000000000000000000					

Technical details

Topological sector sampling

Introduction Light hadron spectrum Decay constants Quark masses 0000000000000

Kaon mixing Summary

Technical details

Autocorrelation time (finest lattice, small mass)

normalized autocorrelation for $lq^{ren}l$ at β =3.8, m_ud=-0.02, m_e=0

 $\tau_{\rm int} = 27.3(7.4)$

(MATLAB code from Wolff.

2004-7)

 locality in position space: |D(x,y)| < const e^{-λ|x-y|} with λ=O(a⁻¹) for all couplings. Our case: D(x,y)=0 as soon as |x-y|>1 (despite smearing)

Iocality of gauge field coupling:

 $|\delta D(x, y)/\delta A(z)| < \text{const} e^{-\lambda |(x+y)/2-z|}$ with $\lambda = O(a^{-1})$ for all couplings.

Our case: $\delta D(x, x) / \delta A(z) < \text{const } e^{-\lambda |x-z|}$ with $\lambda \simeq 2.2a^{-1}$ for $2 \le |x-z| \le 6$

Summary

Technical details

Gauge field coupling locality

6-stout case:

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Technical details

Effective masses and correlated fits

Christian Hoelbling (Wuppertal) Lattice QC with physical quark masses

- → We use 2 safe chiral interpolation ranges: $M_{\pi} < 340,380 \text{ MeV}$
- → We use $SU(2) \chi PT$ and Taylor interpolation forms

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Motivation

Light hadron spectrum

- Goal:
 - Firmly establish (or invalidate?) QCD as the theory of strong interaction in the low energy region
- Method:
 - Post-diction of light hadron spectrum
 - Octet baryons
 - Decuplet baryons
 - Vector mesons
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Continuum
 - Infinite volume (treatment of resonant states)

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary
Motivation					
Scale se	etting				

Goal:

• Unambiguous, precise scale setting

Method:

- We set the scale via a baryon mass
- Desirable properties:
 - experimentally well known
 - small lattice error (Octet better than Decuplet)
 - $\bullet~$ independent of light quark mass \rightarrow large strange content
- Best candidates:
 - Ξ : largest strange content of the octet
 - Ω: member of the decuplet, but no light quarks

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Motivation

Quark mass dependence

Goal:

• Extra-/Interpolate M_X (baryon/vector meson mass) to physical point (M_{π} , M_K)

Method:

- Fundamental parameters: g, m_{ud}, m_s
 - Experimentally inaccessible (confinement!)
 - Must be set via 3 experimentally accessible quantities
- Use M_{Ξ} or M_{Ω} and M_{π} , M_{K} to set parameters
- Variables to parametrize M_{π}^2 and M_K^2 dependence of M_X :
 - Use bare masses aM_y , $y \in \{X, \pi, K\}$ and a (bootstrapped)
 - Use dimensionless ratios $r_y := \frac{M_y}{M_{\Xi/\Omega}}$ (cancellations)

We use both procedures → systematic error

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Motivation

Quark mass dependence (ctd.)

Method (ctd.):

• Parametrization: $M_X = M_X^{(0)} + \alpha M_\pi^2 + \beta M_K^2$ + higher orders

- Leading order sufficinet for M_K^2 dependence
- We include higher order term in M_{π}^2
 - Next order χ PT (around $M_{\pi}^2 = 0$): $\propto M_{\pi}^3$
 - Taylor expansion (around $M_{\pi}^2 \neq 0$): $\propto M_{\pi}^4$

Both procedures fine → systematic error No sensitivity to any order beyond these

- Vector mesons: higher orders not significant
- Baryons: higher orders significant
 - Restrict fit range to further estimate systematics:
 - full range, $M_{\pi} < 550/450 \text{MeV}$

We use all 3 ranges → systematic error

Motivation

Chiral fit using ratios

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Continuum

Continuum extrapolation

Goal:

• Eliminate discretization effects

Method:

- Formally in our action: $O(\alpha_s a)$ and $O(a^2)$
- Discretization effects are tiny
 - Not possible to distinguish between O(a) and $O(a^2)$
 - →include both in systematic error

Decay constants

Quark masses

Kaon mixing

Summary

Infinite volume

Finite volume effects from virtual pions

Goal:

- Eliminate virtual pion finite V effects
 - Hadrons see mirror charges
 - Exponential in lightest particle (pion) mass

Method:

- Best practice: use large V
 - Rule of thumb: $M_{\pi}L \gtrsim 4$
 - Leading effects $\frac{M_X(L) M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{M_\pi L}$ (col

(Colangelo et. al., 2005)

Christian Hoelbling (Wuppertal)

Lattice **QC** with physical quark masses

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Infinite volume

Finite volume effects in resonances

Goal:

• Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
 - Otherwise no sensitivity to resonance mass in ground state

Spectral density

• Treatment as scattering problem

(Lüscher, 1985-1991)

- Parameters: mass and coupling (width)
- Alternative approaches suggested

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Systematics

Systematic uncertainties

Goal:

Accurately estimate total systematic error

Method:

- We account for all the above mentioned effects
- When there are a number of sensible ways to proceed, we take them: Complete analysis for each of
 - 18 fit range combinations
 - ratio/nonratio fits (r_X resp. M_X)
 - O(a) and $O(a^2)$ discretization terms
 - NLO χ PT M_{π}^3 and Taylor M_{π}^4 chiral fit
 - 3 χ fit ranges for baryons: $M_{\pi} < 650/550/450$ MeV

resulting in 432 (144) predictions for each baryon (vector meson) mass with each 2000 bootstrap samples for each Ξ and Ω scale setting

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Systematics

Systematic uncertainties II

Method (ctd.):

- Weigh each of the 432 (144) central values by fit quality Q
 - Median of this distribution → final result
 - Central 68% → systematic error

• Statistical error from bootstrap of the medians

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Result

The light hadron spectrum

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Introduction

Pseudoscalar decay constant ratio

- Goal:
 - Check first row unitarity of CKM matrix
- Method:
 - Compute F_K/F_{π}
 - Perturbative relation to $|V_{us}|^2/|V_{ud}|^2$ with 0.4% accuracy
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Continuum
 - Infinite volume

Introduction	Light hadron spectrum	Decay constants ○●○○○	Quark masses	Kaon mixing	Summary
Introduction					
Observa	able				

With the axial vector current

$$\mathcal{A}_{\mu}(t) = \sum_{\vec{x}} \left(ar{\Psi}^{d} \gamma_{\mu} \gamma_{5} \Psi^{u}
ight) (\vec{x}, t)$$

one obtains

Kaon mixing

Summary

Results

Chiral extrapolation

Introduction	Light hadron spectrum	Decay constants ○○○●○	Quark masses	Kaon mixing	Summary
Results					
Errors					

Introduction	Light hadron spectrum	Decay constants ○○○○●	Quark masses	Kaon mixing	Summary
Results					

Comparison

Prediction from CKM universality $(|V_{us}|/|V_{ud}|)$

Decay constants

Quark masses

Kaon mixing

Summary

Strategy outline

Goal:

• Compute light quark masses ab initio

Relevance:

- Fundamental SM parameters
- Stability of matter depends on their values
- Not obtainable perturbatively

Challenge:

- Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Continuum extrapolation
 - Nonperturbative renormalization
 - Infinite volume

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Renormalization

Renormalization strategy

- Goal:
 - Full nonperturbative renormalization
 - Optional accurate conversion to perturbative scheme
- Method:
 - We use RI-MOM scheme (Martinelli et. al., 1993)
 - O(a) correction (Maillart, Niedermayer, 2008)
 - Compute m_q at low scale $\mu \ll 2\pi/a \sim 11-24 \text{ GeV}$

• $\mu = 2.1 GeV$ • $\mu = 1.3 GeV$

- Do continuum non-perturbative running to high scale $\mu' \gg \Lambda_{\rm QCD}$
- Further conversion in 4-loop PT

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Renormalization

Desired scale in RI-MOM scheme

Christian Hoelbling (Wuppertal) Lattice QC with physical quark masses

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Renormalization

Nonperturbative running

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Renormalization

Reaching the perturbative regime

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Renormalization

Optional conversion to $\overline{\text{MS}}$

Christian Hoelbling (Wuppertal) Lattice GCD with physical quark masses

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Ratio-difference method

Quark mass definitions

✓ No additive mass renormalization and ambiguity in *m*_{crit}
 ✓ Only *Z*_S multiplicative renormalization (no pion poles)
 Image: Works with *O*(*a*) improvement (we use this)

Introduction Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Finite volume

Tiny finite volume effects

Introduction	Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

m_{ud} and m_s

Strange quark mass

Christian Hoelbling (Wuppertal) Lattice **QC** with physical quark masses

Introduction Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

m_{ud} and m_s

Light quark masses

Christian Hoelbling (Wuppertal) Lattice GCD with physical quark masses

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

 m_u and m_d

Individual m_u and m_d

- Goal:
 - Compute *m_u* and *m_d* separately
- Method:
 - Need QED and isospin breaking effects in principle
 - Alternative: use dispersive input -Q from $\eta \to \pi \pi \pi$

$$Q^2 = rac{1}{2} \left(rac{m_s}{m_{ud}}
ight)^2 rac{m_d - m_u}{m_{ud}}$$

- ✓ Transform precise m_s/m_{ud} into $(m_d m_u)/m_{ud}$
- We use the conservative Q = 22.3(8) (Leutwyler, 2009)

Decay constants

Quark masses

Kaon mixing

Summary

Systematic errors

Systematic error treatment

- Goal:
 - Reliably estimate total systematic error
- Method:
 - 288 full analyses (2000 bootstrap on each)
 - 2 plateaux regions
 - 2 continuum forms: $O(\alpha_s a)$, $O(a^2)$
 - 3 chiral forms: $2 \times SU(2)$, Taylor
 - 2 chiral ranges: $M_{\pi} < 340,380$ MeV
 - 3 renormalization matching procedures
 - 2 NP continuum running forms
 - 2 scale setting procedures
 - All analyses weighted by fit quality
 - Mean gives final result
 - Stdev gives systematic error
 - Statistical error from 2000 bootstrap samples

Introduction	Light hadron spectrum	Decay constants	Quark masses ○○○○○○○○○○○○	Kaon mixing	Summary
Systematic errors					
Final res	sult				

	RI @ 4 GeV	RGI	<u>MS</u> @ 2 GeV
ms	96.4(1.1)(1.5)	127.3(1.5)(1.9)	95.5(1.1)(1.5)
m _{ud}	3.503(48)(49)	4.624(63)(64)	3.469(47)(48)
m _u	2.17(04)(10)	2.86(05)(13)	2.15(03)(10)
m _d	4.84(07)(12)	6.39(09)(15)	4.79(07)(12)

Additional consistency checks:

- ✓ Use m^{PCAC} only, no ratio-difference method is compatible, slightly larger error
- ✓ Unweighted final result and systematic error regligible impact

ntroduction	Light hadron spectrum	Deca

Decay constants

Quark masses

Kaon mixing

Summary

Systematic errors

Comparison

Christian Hoelbling (Wuppertal)

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing ●○○○○○○○○ Summary

Introduction

Standard model neutral K mixing

• Goal:

- Check SM CP violation in neutral K system
- Method:
 - Compute effective weak matrix element
 - Relate kaon CP violation to CKM phase
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors
 - Physical quark masses
 - Mixing of unphysical operators
 - Continuum
 - Infinite volume

$$\langle J_0^{L^{\dagger}}(t) J_0^{L}(0) \rangle \xrightarrow{t \to \infty} \frac{|\langle K | J_0^{-} | 0 \rangle|^2}{2M_K} e^{-M_K t}$$

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

Data

Unphysical operator mixing

- $\propto \chi$ SB induces mixing with 4 unphysical operators
- Mixing terms chirally enhanced
- ✓ Small even below physical m_{π}
- Good chirality of our action

0.002

0.001 ٥

-0.00 -0.002 -0.003

sub 14

Christian Hoelbling (Wuppertal) Lattice GC with physical quark masses

Introduction Light hadron spectrum

Decay constants

Quark masses

 Summary

Results

Continuum extrapolation

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing ○○○○○○●○	Summary
Results					
Errors					

Introduction 000000000000	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing ○○○○○○○●	Summary
Results					
Compar	ison				

Introduction Light hadron spectrum

Decay constants

Quark masses Kaon mixing

g Summary

Christian Hoelbling (Wuppertal) Lattice GCD with physical quark masses

Light hadron spectrum

Decay constants

Quark masses

Kaon mixing

Summary

THE END

Christian Hoelbling (Wuppertal) Lattice GC with physical quark masses

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing

Summary

Chiral cuts

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summar

Chiral cuts

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary

Chiral cuts

Introduction	Light hadron spectrum	Decay constants	Quark masses	Kaon mixing	Summary

Error budget

	cen. val.	$\sigma_{ m stat}$	$\sigma_{ m syst}$
m _{ud}	3.503	0.048	0.049
ms	96.43	1.13	1.47
$m_{ m s}/m_{ m ud}$	27.531	0.196	0.083

Relative error contributions

plateau	scale set	fit form	mass cut	renorm.	cont.
0.330	0.034	0.030	0.157	0.080	0.926
0.207	0.005	0.031	0.085	0.085	0.970
0.513	0.200	0.023	0.320		0.771