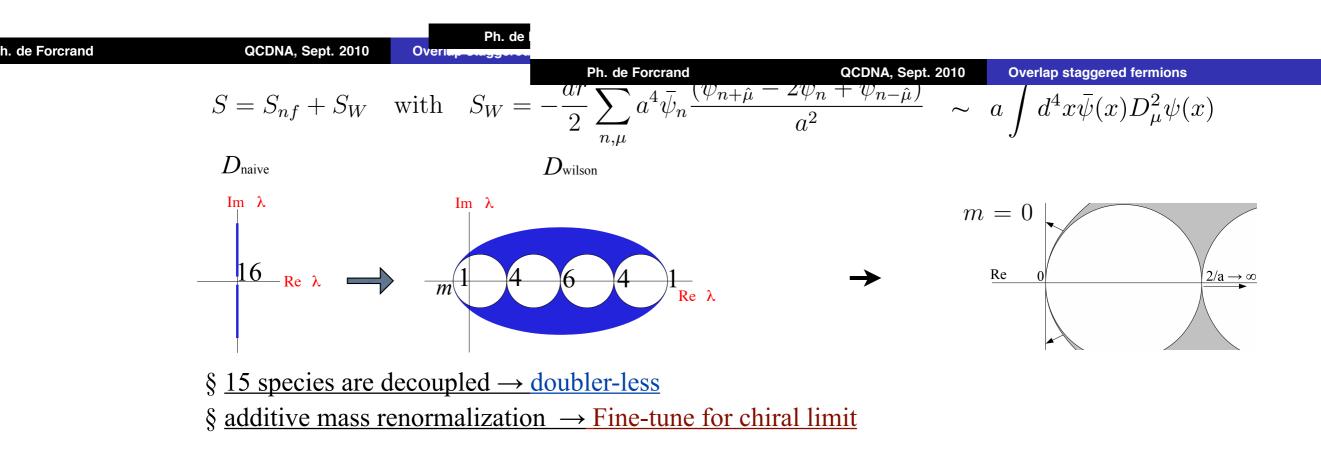
# Flavored-mass terms for naive and staggered fermions

## Tatsuhiro MISUMIYITP/BNL

M. Creutz, T. Kimura, T. Misumi, *JHEP* 1012:041 (2010)
M. Creutz, T. Kimura, T. Misumi, *PRD* 83:094506 (2011)
T. Kimura, S. Komatsu, T. Misumi, T. Noumi, S. Torii, S. Aoki, *JHEP* 1201:048 (2012)
T. Misumi, *Ph.D Thesis*, Kyoto University (2012)

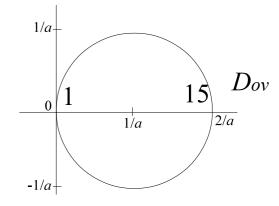
02/09/2012 NTFL workshop@Yukawa Institute, Kyoto

## Introduction



$$D_{ov} = 1 + \gamma_5 \frac{H_W(m)}{\sqrt{H_W^2(m)}} = 1 + \frac{D_W(m)}{\sqrt{D_W^{\dagger}(m)D_W(m)}}$$

Ginsparg-Wilson :  $\{\gamma_5, D_{ov}\} = a D_{ov} \gamma_5 D_{ov}$ 



### Staggered fermion

Spin diagonalization :  $\psi_n = \gamma_1^{n_1} \gamma_2^{n_2} \gamma_3^{n_3} \gamma_4^{n_4} \chi_n$ ,  $\bar{\psi}_n = \bar{\chi}_n \gamma_4^{n_4} \gamma_3^{n_3} \gamma_2^{n_2} \gamma_1^{n_1}$ 

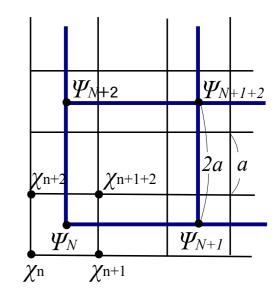
$$S_{\rm nf} = 4S_{\rm st} = 4\left[\frac{1}{2}\sum_{n,\mu}\eta_{\mu}(n)\bar{\chi}_n\left(\chi_{n+\hat{\mu}} - \chi_{n-\hat{\mu}}\right) + \frac{m}{2}\sum_n\bar{\chi}_n\chi_n\right] \qquad \eta_{\mu}(n) = (-1)^{\sum_{\nu<\mu}n_{\nu}}$$

*One naive fermion*  $\rightarrow$  4 *Staggered fermions* 

#### **Properties**

- 4-flavor Dirac fermions
- Flavored chiral symmetry

$$\epsilon_n = (-1)^{n_1 + n_2 + n_3 + n_4}$$
$$\sim \Gamma_{55} = \frac{\gamma_5}{\text{spin flavor}} \approx \gamma_5$$



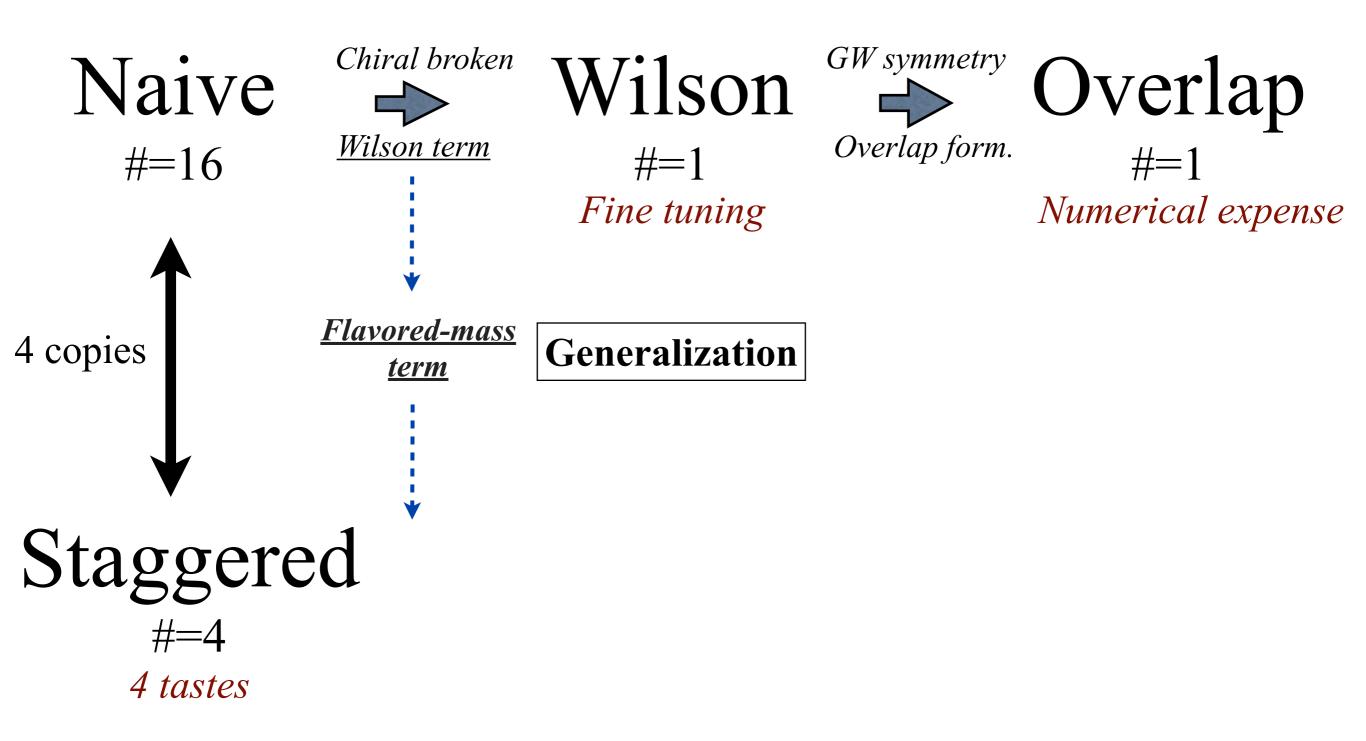
§ chiral symmetry + one-component  $\rightarrow$  suitable for calculations

 $\S 4 \text{ species} \rightarrow \text{more than } 3....$ 



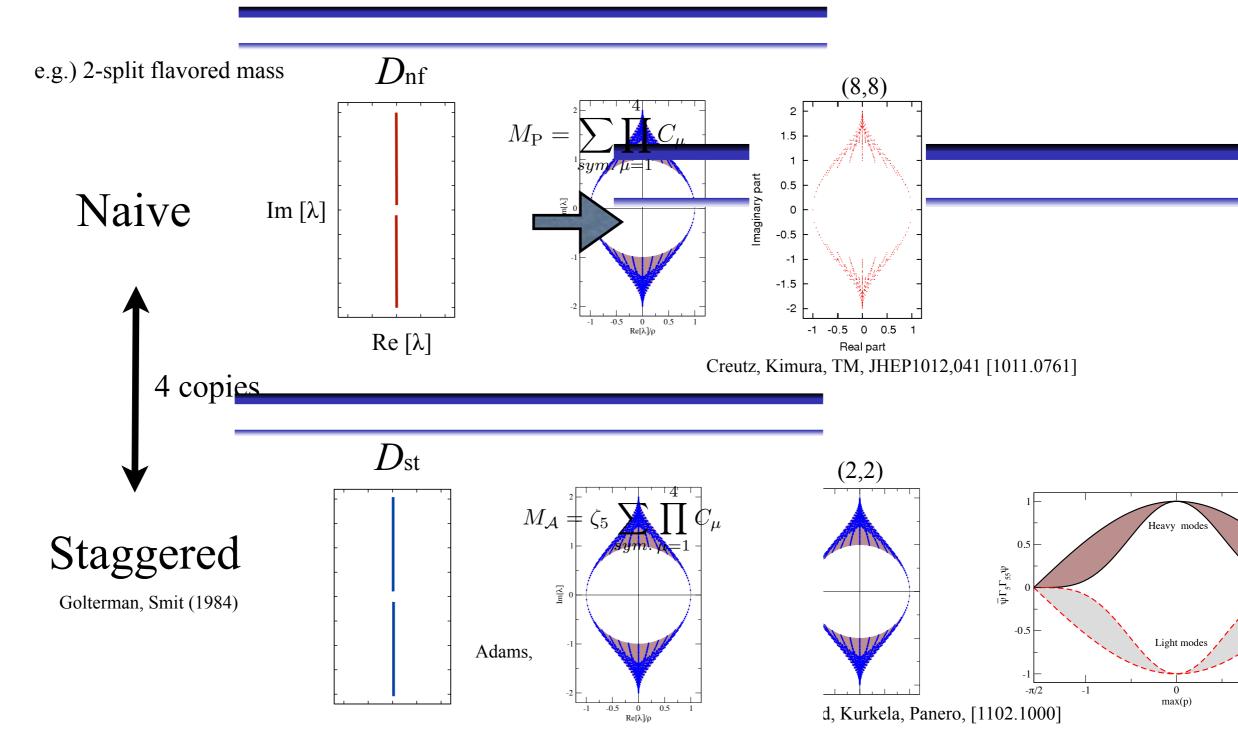


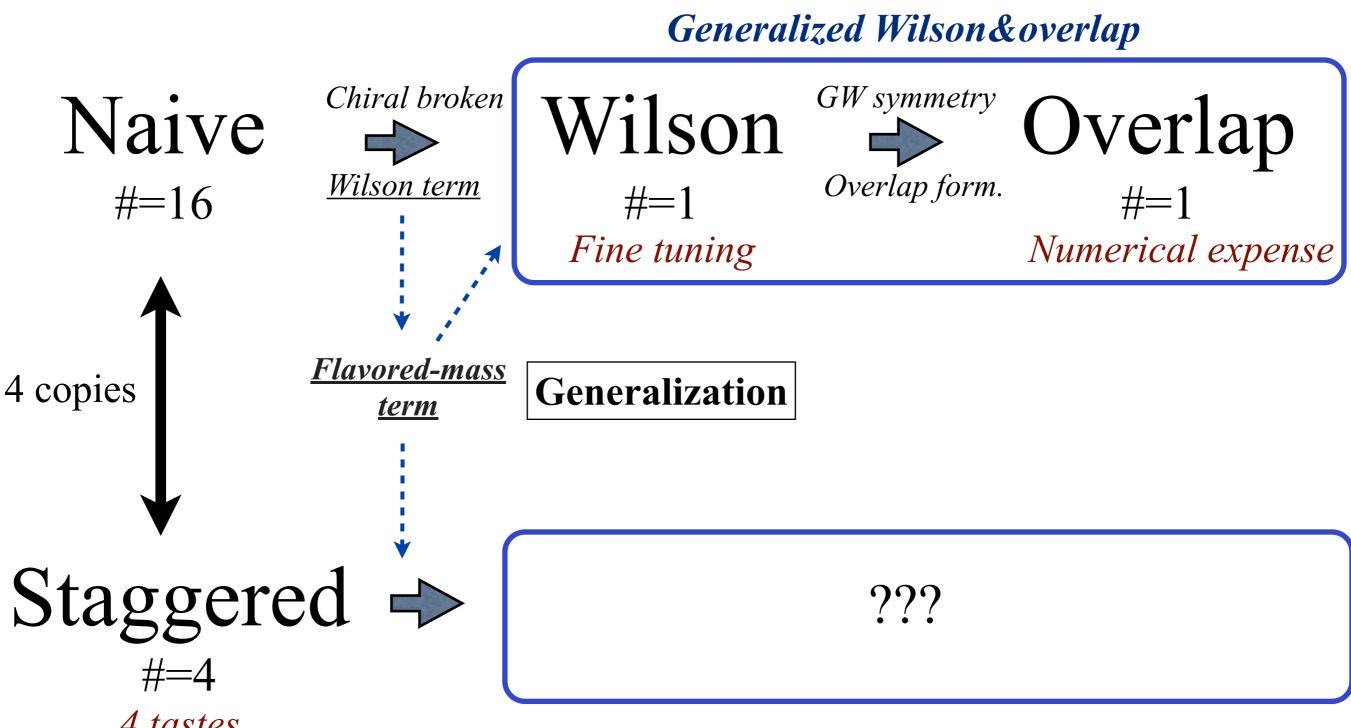
4 copies



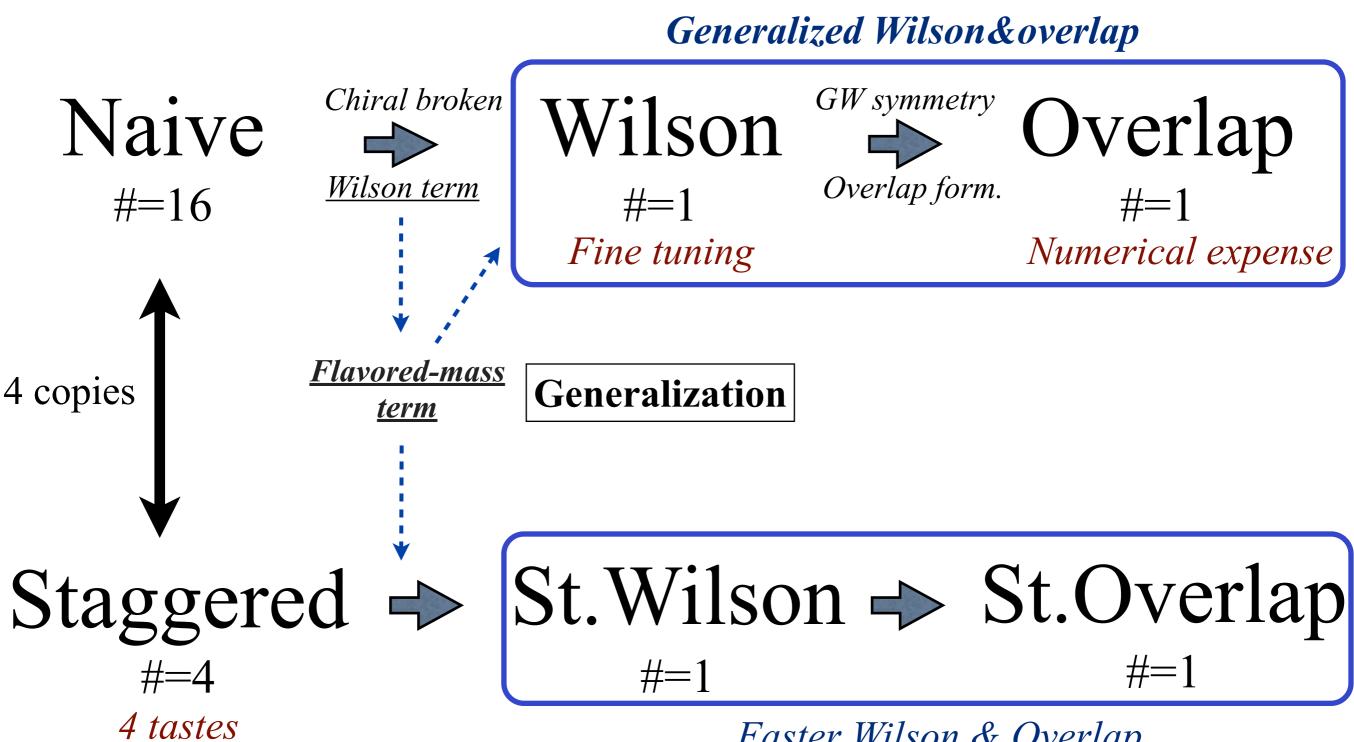
# Flavored mass terms

~ Generalized Wilson terms ~





4 tastes



Faster Wilson & Overlap

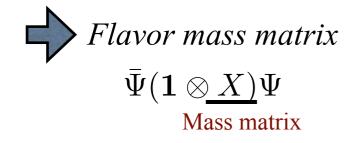
# 1. Flavored-mass terms

~ general terms to lift degenerate species ~

Naïve fermion M. Creutz, T. Kimura, TM, JHEP1012:041 (2010)

• 16 species 
$$\Gamma_{(i)}^{-1}\gamma_{\mu}\Gamma_{(i)} = \gamma_{\mu}^{(i)}$$
  
• 16-flavor multiplet

$$\Psi(p) = \begin{pmatrix} \psi_{(1)}(p - p_{(1)}) \\ \psi_{(2)}(p - p_{(2)}) \\ \vdots \\ \psi_{(16)}(p - p_{(16)}) \end{pmatrix}$$

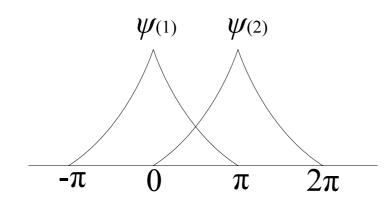


| label | position            | $\chi$ charge | Γ                   | type |
|-------|---------------------|---------------|---------------------|------|
| 1     | (0, 0, 0, 0)        | +             | 1                   | S    |
| 2     | $(\pi,0,0,0)$       | _             | $i\gamma_1\gamma_5$ | А    |
| 3     | $(0,\pi,0,0)$       | _             | $i\gamma_2\gamma_5$ | А    |
| 4     | $(\pi,\pi,0,0)$     | +             | $i\gamma_1\gamma_2$ | Т    |
| 5     | $(0,0,\pi,0)$       | —             | $i\gamma_3\gamma_5$ | А    |
| 6     | $(\pi,0,\pi,0)$     | +             | $i\gamma_1\gamma_3$ | Т    |
| 7     | $(0,\pi,\pi,0)$     | +             | $i\gamma_2\gamma_3$ | Т    |
| 8     | $(\pi,\pi,\pi,0)$   | —             | $\gamma_4$          | V    |
| 9     | $(0,0,0,\pi)$       | —             | $i\gamma_4\gamma_5$ | А    |
| 10    | $(\pi,0,0,\pi)$     | +             | $i\gamma_1\gamma_4$ | Т    |
| 11    | $(0,\pi,0,\pi)$     | +             | $i\gamma_2\gamma_4$ | Т    |
| 12    | $(\pi,\pi,0,\pi)$   | —             | $\gamma_3$          | V    |
| 13    | $(0,0,\pi,\pi)$     | +             | $i\gamma_3\gamma_4$ | Т    |
| 14    | $(\pi,0,\pi,\pi)$   | —             | $\gamma_2$          | V    |
| 15    | $(0,\pi,\pi,\pi)$   | —             | $\gamma_1$          | V    |
| 16    | $(\pi,\pi,\pi,\pi)$ | +             | $\gamma_5$          | Р    |

## • <u>Point-split fields</u> M. Creutz (2010), for minimally doubled fermions.

$$\begin{split} \psi_{(1)}(p-p_{(1)}) &= \frac{1}{2^4}(1+\cos p_1)(1+\cos p_2)(1+\cos p_3)(1+\cos p_4)\Gamma_{(1)}\psi(p), \\ \psi_{(2)}(p-p_{(2)}) &= \frac{1}{2^4}(1-\cos p_1)(1+\cos p_2)(1+\cos p_3)(1+\cos p_4)\Gamma_{(2)}\psi(p), \\ \psi_{(3)}(p-p_{(3)}) &= \frac{1}{2^4}(1+\cos p_1)(1-\cos p_2)(1+\cos p_3)(1+\cos p_4)\Gamma_{(3)}\psi(p), \\ &\vdots \\ \psi_{(16)}(p-p_{(16)}) &= \frac{1}{2^4}(1-\cos p_1)(1-\cos p_2)(1-\cos p_3)(1-\cos p_4)\Gamma_{(16)}\psi(p) \end{split}$$

#### $\rightarrow$ Independent fields in low energy limit



$$\Psi(p) = \begin{pmatrix} \psi_{(1)}(p - p_{(1)}) \\ \psi_{(2)}(p - p_{(2)}) \\ \vdots \\ \psi_{(16)}(p - p_{(16)}) \end{pmatrix} \qquad \bar{\Psi}(\mathbf{1} \otimes \underline{X}) \Psi$$
Mass matrix
16-flavor multiplet

• Conditions on flavored-mass terms

(1) gamma-5 hermiticity :  $D^{\dagger} = \gamma_5 D \gamma_5$ 

 $\longrightarrow \det(D) \ge 0$  essential for euclidian vector-like theory

(2) O(a) irrelevant term

~ 
$$a \int d^4x \bar{\psi}(x) D^2_{\mu} \psi(x)$$
 dim-5 operator vanishes in a $\rightarrow 0$ 

- Physical modes in the continuum limit
- Rotational symmetry

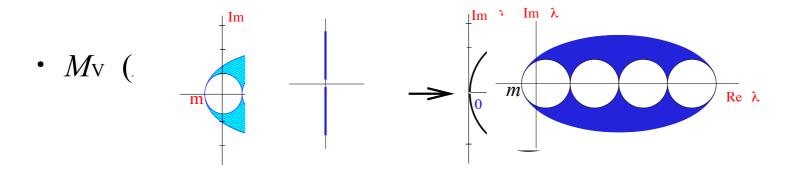
#### ◆ <u>Flavored-mass terms</u>

$$\begin{array}{rcl} \mathrm{V} & : & \bar{\Psi} \left( \mathbf{1} \otimes (\tau_{3} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}) \right) \Psi & = & \cos p_{1} \bar{\psi} \psi \\ \mathrm{T} & : & \bar{\Psi} \left( \mathbf{1} \otimes (\tau_{3} \otimes \tau_{3} \otimes \mathbf{1} \otimes \mathbf{1}) \right) \Psi & = & \cos p_{1} \cos p_{2} \bar{\psi} \psi \\ \mathrm{A} & : & \bar{\Psi} \left( \mathbf{1} \otimes (\mathbf{1} \otimes \tau_{3} \otimes \tau_{3} \otimes \tau_{3}) \right) \Psi & = & \left( \prod_{\mu=2}^{4} \cos p_{\mu} \right) \bar{\psi} \psi \end{array}$$

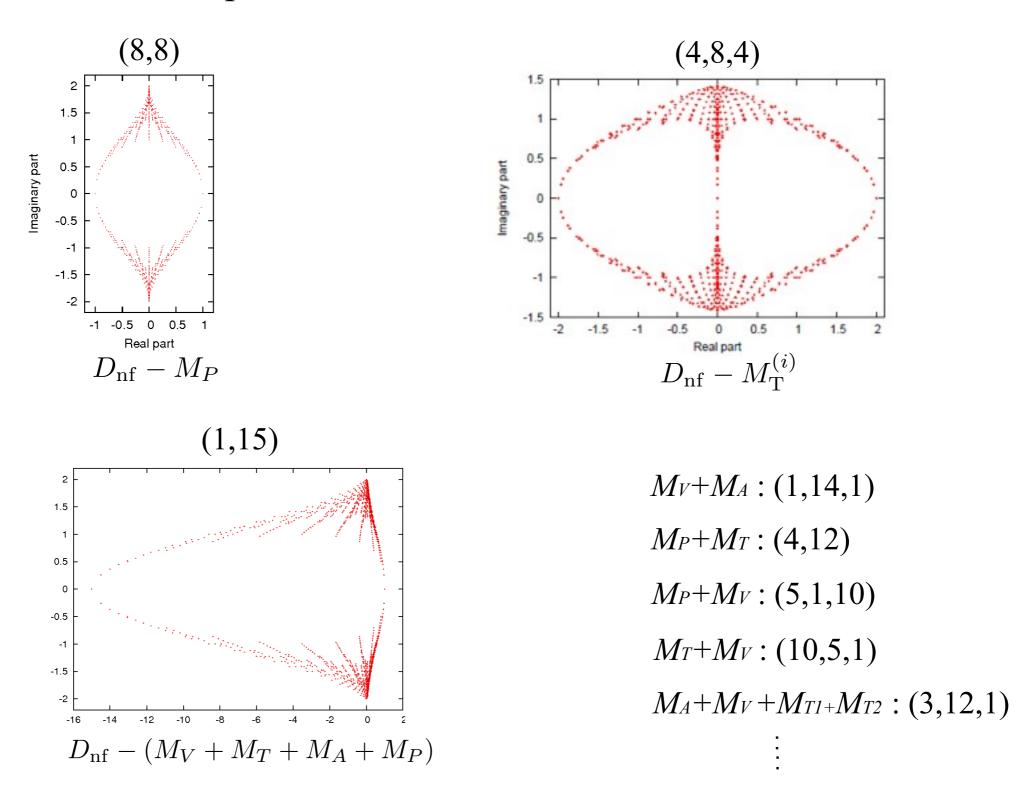
$$\begin{array}{l} M_{\mathrm{V}} & = \sum_{\mu} C_{\mu}, \\ M_{\mathrm{T}} & = \sum_{perm. \ sym.} C_{\mu}C_{\nu}, \\ M_{\mathrm{A}} & = \sum_{perm. \ sym.} \sum_{\nu} C_{\mu}C_{\nu}, \\ M_{\mathrm{A}} & = \sum_{perm. \ sym.} \sum_{\nu} C_{\nu}, \\ M_{\mathrm{A}} & = \sum_{perm. \ sym.} \sum_{\nu} C_{\nu}, \\ M_{\mathrm{A}} & = \sum_{perm. \ sym.} \sum_{\nu} C_{\mu}, \\ \mathrm{P} & : & \bar{\Psi} \left( \mathbf{1} \otimes (\tau_{3} \otimes \tau_{3} \otimes \tau_{3} \otimes \tau_{3}) \right) \Psi \end{array}$$

• 
$$O(a)$$
 irrelevant terms  $\sum_{n} \bar{\psi}_n(M_P - 1)\psi_n \rightarrow -a \int d^4x \bar{\psi}(x) D^2_{\mu} \psi(x) + O(a^2)$   
Intro Construction Index Overlap Improvements Cource.

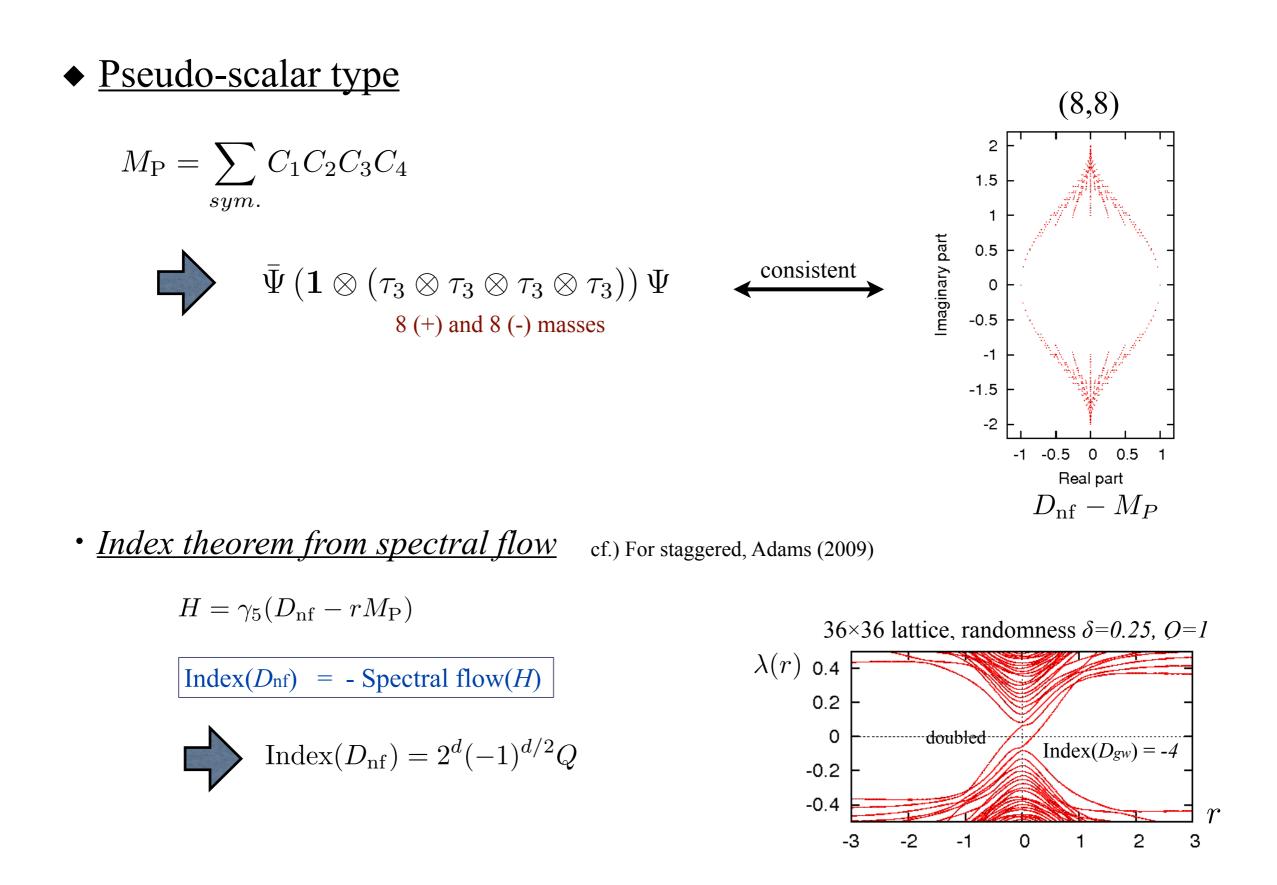
• Idea # 2: use as kernel in overlap  $D_{ov} = 1 + \frac{D_{Adams}}{\sqrt{D_{Adams}}D_{Adams}}$ • low-energy species-splitting terms no more additive mass renorm. orm.

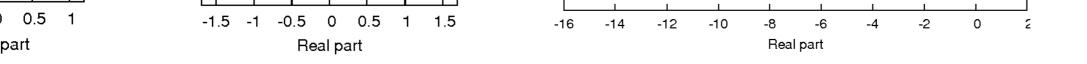


#### Dirac spectra with flavored mass terms



 $\rightarrow$  *Multi-flavor Wilson & Overlap* (although we need care about renormalization)





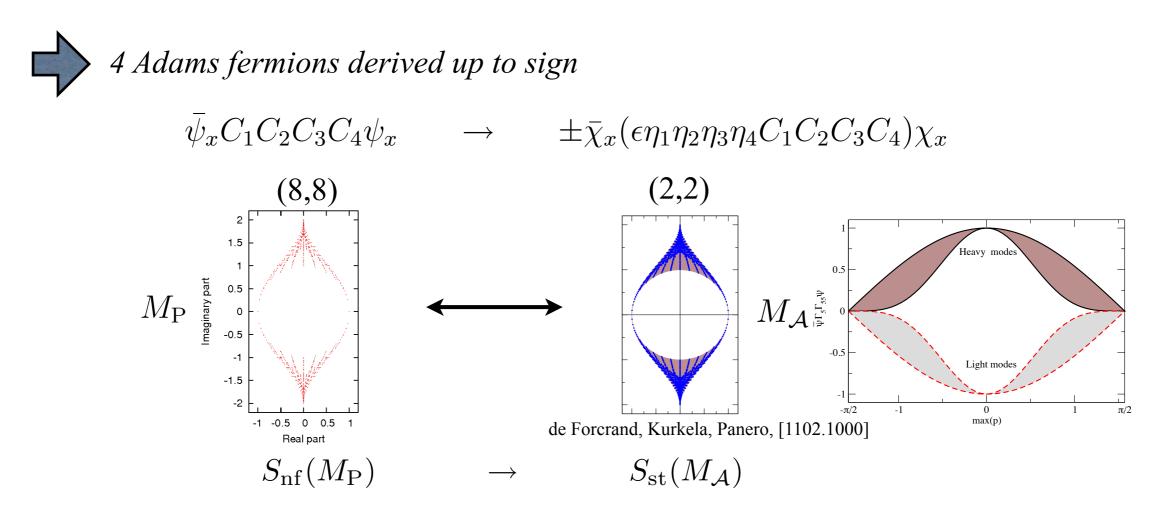
Adams-type flavored mass D. Adams (2009)

• spin diagonalization

 $\bar{\psi}_x\psi_{x+\hat{1}+\hat{2}+\hat{3}+\hat{4}} = \bar{\chi}_x\gamma_4^{x_4}\gamma_3^{x_3}\gamma_2^{x_2}\gamma_1^{x_1}\gamma_1^{x_1+1}\gamma_2^{x_2+1}\gamma_3^{x_3+1}\gamma_4^{x_4+1}\chi_{x+\hat{1}+\hat{2}+\hat{3}+\hat{4}}$ 

 $= (-1)^{x_2+x_4} \bar{\chi}_x \gamma_5 \chi_{x+\hat{1}+\hat{2}+\hat{3}+\hat{4}} \qquad (\gamma_5 \text{ diagonalized})$ 

 $\rightarrow \pm \bar{\chi}_x \epsilon \eta_1 \eta_2 \eta_3 \eta_4 \chi_{x+\hat{1}+\hat{2}+\hat{3}+\hat{4}}$ 





$$M_{\rm T} = M_{\rm T}^{(1)} + M_{\rm T}^{(2)} + M_{\rm T}^{(3)},$$

$$M_{\rm T}^{(1)} = \frac{1}{2}(C_{1}C_{2} + C_{2}C_{1}) + \frac{1}{2}(C_{3}C_{4} + C_{4}C_{3}),$$

$$M_{\rm T}^{(2)} = \frac{1}{2}(C_{1}C_{3} + C_{3}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm T}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(3)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(4)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(4)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(4)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{2}C_{4} + C_{4}C_{2}),$$

$$M_{\rm S}^{(4)} = \frac{1}{2}(C_{1}C_{4} + C_{4}C_{1}) + \frac{1}{2}(C_{1}C_{4}$$

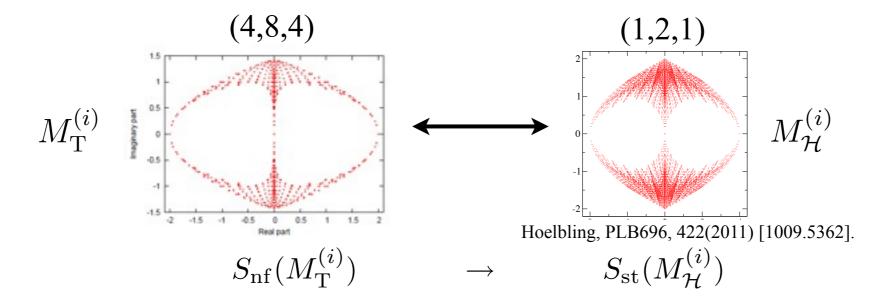
#### Hoelbling-type flavored mass

• spin diagonalization

$$\bar{\psi}_{x}\psi_{x+\hat{1}+\hat{2}} + \bar{\psi}_{x}\psi_{x+\hat{3}+\hat{4}} = (-1)^{x_{2}}\bar{\chi}_{x}\gamma_{1}\gamma_{2}\chi_{x+\hat{1}+\hat{2}} + (-1)^{x_{4}}\bar{\chi}_{x}\gamma_{3}\gamma_{4}\chi_{x+\hat{3}+\hat{4}}$$
$$\rightarrow \pm \bar{\chi}_{x}i\epsilon_{12}\eta_{1}\eta_{2}\chi_{x+\hat{1}+\hat{2}} \pm \bar{\chi}_{x}i\epsilon_{34}\eta_{3}\eta_{4}\chi_{x+\hat{3}+\hat{4}}$$

\* two terms simultaneously diagonalizable :  $[\sigma_{12}, \sigma_{34}] = 0$ 

$$\begin{array}{r} \checkmark \\ \bullet \end{array} \begin{array}{r} & 4 \ Hoelbling \ fermions \ (3 \ units) \ up \ to \ sign \\ & \bar{\psi}_x[(C_1C_2 + C_2C_1) + (C_3C_4 + C_4C_3)]\psi_x \\ & \rightarrow \quad \pm \bar{\chi}_x[i\epsilon_{12}\eta_1\eta_2(C_1C_2 + C_2C_1) \pm i\epsilon_{34}\eta_3\eta_4(C_3C_4 + C_4C_3)]\chi_x \end{array}$$



Three units of Hoelbling flavored mass  $M_{\rm T}^{(i)} \rightarrow M_{\mathcal{H}}^{(i)}$ 

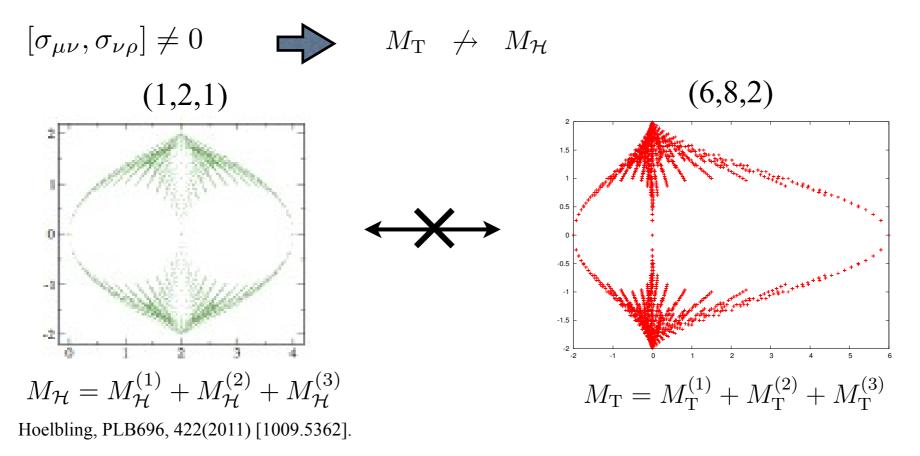
$$M_{\mathcal{H}} = M_{\mathcal{H}}^{(1)} + M_{\mathcal{H}}^{(2)} + M_{\mathcal{H}}^{(3)},$$
  

$$M_{\mathcal{H}}^{(1)} = \frac{i}{2\sqrt{3}} [\epsilon_{12}\eta_{1}\eta_{2}(C_{1}C_{2} + C_{2}C_{1}) + \epsilon_{34}\eta_{3}\eta_{4}(C_{3}C_{4} + C_{4}C_{3})],$$
  

$$M_{\mathcal{H}}^{(2)} = \frac{i}{2\sqrt{3}} [\epsilon_{13}\eta_{1}\eta_{3}(C_{1}C_{3} + C_{3}C_{1}) + \epsilon_{42}\eta_{4}\eta_{2}(C_{4}C_{2} + C_{2}C_{4})],$$
  

$$M_{\mathcal{H}}^{(3)} = \frac{i}{2\sqrt{3}} [\epsilon_{14}\eta_{1}\eta_{4}(C_{1}C_{4} + C_{4}C_{1}) + \epsilon_{23}\eta_{2}\eta_{3}(C_{2}C_{3} + C_{3}C_{2})].$$

#### *\* Direct decomposition is impossible, unlike Adams' case.*



## 2. Symmetries of St. Wilson

- Shift symmetry broken to 2-link shift for  $S_A$ broken to 4-link shift for  $S_H$  $S_{\rho}: \chi_x \to \zeta_{\rho}(x)\chi_{x+\hat{\rho}}, \quad \bar{\chi}_x \to \zeta_{\rho}(x)\bar{\chi}_{x+\hat{\rho}}, \quad U_{\mu,x} \to U_{\mu,x+\hat{\rho}}$
- Axis reversal  $\longrightarrow$  broken to shifted axis reversal  $\mathcal{I}_{\rho}: \ \chi_x \to (-1)^{x_{\rho}} \chi_{Ix}, \ \ \bar{\chi}_x \to (-1)^{x_{\rho}} \bar{\chi}_{Ix}, \ \ U_{\mu,x} \to U_{\mu,Ix}$
- Rotation • Rot
- Conjugation • Conjugation broken in S<sub>A</sub> broken in S<sub>H</sub>

 $\mathcal{C}: \chi_x \to \epsilon_x \bar{\chi}_x^T, \ \bar{\chi}_x \to -\epsilon_x \bar{\chi}_x^T, \ U_{\mu,x} \to U_{\mu,x}^*$ 

#### § Separating spinor & taste in momentum space

 $\Gamma_{\mu}$ : spinor-space gamma  $\Xi_{\mu}$ : taste-space gamma  $\phi(p)_{A} \equiv \chi(p + \pi_{A}) \ (-\pi/2 \leq p_{\mu} < \pi/2)$ 

 $\{\Gamma_{\mu}, \Gamma_{\nu}\} = 2\delta_{\mu\nu}, \ \{\Xi_{\mu}, \Xi_{\nu}\} = 2\delta_{\mu\nu} \text{ and } \{\Gamma_{\mu}, \Xi_{\nu}\} = 0$ 

Shift 
$$S_{\mu}: \phi(p) \to \exp(ip_{\mu})\Xi_{\mu}\phi(p)$$

Axis inv. 
$$\mathcal{I}_{\rho}: \phi(p) \rightarrow \Gamma_{\rho}\Gamma_{5}\Xi_{\rho}\Xi_{5}\phi(Ip)$$

**Rotation** 
$$\mathcal{R}_{\rho\sigma}: \phi(p) \to \exp(\frac{\pi}{4}\Gamma_{\rho}\Gamma_{\sigma})\exp(\frac{\pi}{4}\Xi_{\rho}\Xi_{\sigma})\phi(R^{-1}p)$$

**Conjugation**  $\mathcal{C}: \phi(p) \rightarrow \overline{\phi}(-p)^T$ 

• Discrete symmetries in Staggered Wilson Re-interpretation of Golterman-Smit (1984)

• <u>**Parity</u>**  $\rightarrow$  4th-*shift* × spatial *axis*</u>

 $\mathcal{I}_s \mathcal{S}_4 \sim \exp(ip_4) \Gamma_4 \phi(-\mathbf{p}, p_4)$ 

- <u>Charge conjugation</u>  $\rightarrow$  triple-rotation  $\times$  conjugation for Hoelbling-type
- Shifted square rotation  $\rightarrow \mu v$ -rot  $\times \nu \mu$ -rot  $\times \mu$ -shift  $\times v$ -shift

$$\mathcal{S}_{\nu}\mathcal{S}_{\mu}\mathcal{R}_{\nu\mu}\mathcal{R}_{\mu\nu} \sim \exp(ip_{\mu}+ip_{\nu})\Gamma_{\mu}\Gamma_{\nu}\phi(\tilde{p})$$

These symmetries hold for  $M_{\mathcal{A}}, M_{\mathcal{H}}, M_{\mathcal{H}}^{(i)}$ .

Indicates restoration of essential symmetries in the continuum limit.

# 3. Central cusps

Creutz, Kimura, Misumi, *PRD* **83**:094506 (2011), Kimura, Komatsu, Misumi, Noumi, Torii, Aoki, *JHEP* **1201**:048 (2012)

• Wilson fermion without on-site terms  $M_W \equiv m + 4r = 0$ 

$$S = \frac{1}{2} \sum_{x,\mu} \bar{\psi}_x [\gamma_\mu (\psi_{x+\mu} - \psi_{x-\mu}) - (\psi_{x+\mu} + \psi_{x-\mu})]$$

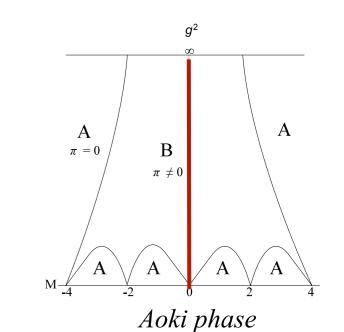
Extra U(1) v symmetry emerge !  $\psi_x \rightarrow e^{i\theta(-1)^{x_1+x_2+x_3+x_4}}, \quad \bar{\psi}_x \rightarrow \bar{\psi}_x e^{i\theta(-1)^{x_1+x_2+x_3+x_4}}$ 

- prohibits additive mass renormalization !
- will be spontaneously broken due to pion condensation !  $\langle \bar{\psi} \gamma_5 \psi \rangle$

§ Strong-coupling meson potential  $p = (\pi, \pi, \pi, \pi + im_{SPA})$ 

$$\cosh(m_{SPA}) = 1 + \frac{2M_W^2(16 + M_W^2)}{16 - 15M_W^2}$$
 Massless NG boson

It is expected to describe 6-flavor Twisted-mass QCD.  $\bar{\psi}\psi \leftrightarrow \bar{\psi}\gamma_5\psi$ <u>different bases</u>



• For other naive flavored mass terms

 $M_{\rm A}$  : U(1)v restored

 $M_{\rm T}$  : None

 $M_{\rm P}$  : None

◆ For staggered flavored mass terms

 $M_{\rm A}$  : None

 $M_{\rm H}$  : Naive conjugation

 $\mathcal{C}: \chi_x \to \bar{\chi}_x^T, \quad \bar{\chi}_x \to \chi_x^T, \quad U_{\mu,x} \to U_{\mu,x}^*$ 

Restoration of U(1)v is peculiar to odd-link flavored mass.

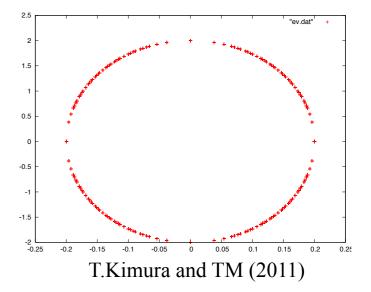
Odd-link flavored mass for staggered fermions possible ?

$$M_{1L} = \sum_{\mu} \xi_{\mu} C_{\mu} \sim \sum_{\mu} (1 \otimes \gamma_{\mu}) + O(a)$$

• gamma5-hermiticity breaks down.

*Isospin-type possible?* in communication with de Forcrand (2011)

• chiral symmetry remains...... Automatically overlap !?



# 4. <u>Summary</u>

1. Flavored-mass terms give us new types of Wilson and overlap fermions.

2. Staggered-Wilson can be derived from generalized Wilson fermions through spin-diagonalization.

3. Central cusps are expected to describe twisted-mass QCD without any parameter tuning.

#### ◆ gauge configuration

case [13]: we start with a smooth U(1) gauge field with topological charge Q,

$$U_{x,x+e_1} = e^{i\omega x_2}, \qquad U_{x,x+e_2} = \begin{cases} 1 & (x_2 = 1, 2, \cdots, L-1) \\ e^{i\omega L x_1} & (x_2 = L) \end{cases},$$
(30)

where L is the lattice size and  $\omega$  is the curvature given by  $\omega = 2\pi Q$ . Then, to emulate a typical gauge configuration of a practical simulation, we introduce disorder effects to link variables by random phase factors,  $U_{x,y} \to e^{ir_{x,y}}U_{x,y}$ , where  $r_{x,y}$  is a random number uniformly distributed in  $[-\delta \pi, \delta \pi]$ . The parameter  $\delta$  determines the magnitude of disorder.

cf.) 
$$1 - \cos ap_1 \cos ap_2 = \frac{a^2 p_1^2 + a^2 p_2^2}{2} + O(a^3)$$
  
 $2 - (\cos ap_1 + \cos ap_2) = \frac{a^2 p_1^2 + a^2 p_2^2}{2} + O(a^3)$ 

 $M_{\mathcal{A}}, M_{\mathcal{H}}$