Aoki phases in the lattice Gross-Neveu model with staggered Wilson fermion

Taro Kimura

Department of Basic Science, Univ of Tokyo and Mathematical Physics Laboratory, RIKEN

Feb 9, 2012 Workshop on New-type of Fermions on the Lattice

Collaboration with M. Creutz (BNL) and T. Misumi (YITP) Phys. Rev. **D83** (2011) 094506 [arXiv:1101.4239]

Lattice fermions

Naive

• Wilson [Wilson]

- Wilson [Wilson]
- Domain-wall & Overlap [Kaplan] [Furman-Shamir] [Neuberger]

- Wilson [Wilson]

• Staggered [Susskind]

• Domain-wall & Overlap [Kaplan] [Furman-Shamir] [Neuberger]

Lattice fermions					
Naive	\longrightarrow	Wilson	\longrightarrow	Overlap (DW)	
$\downarrow \\ Staggered$	\longrightarrow	St Wilson			

- Wilson [Wilson]
- Staggered [Susskind]
- Staggered Wilson

• Domain-wall & Overlap [Kaplan] [Furman-Shamir] [Neuberger]

[Adams] [Hoelbling]

Lattice fermions				
Naive	\longrightarrow	Wilson	\longrightarrow	Overlap (DW)
$\stackrel{\scriptscriptstyle }{Staggered}$	\longrightarrow	St Wilson	\longrightarrow	St Overlap

- Wilson [Wilson]
- Domain-wall & Overlap [Kaplan] [Furman-Shamir] [Neuberger]
- Staggered [Susskind]
- Staggered Wilson & Overlap [Adams] [Hoelbling]

Lattice fermions				
Naive	\longrightarrow	Wilson	\longrightarrow	Overlap (DW)
Staggered	\longrightarrow	St Wilson	\longrightarrow	St Overlap

- Wilson [Wilson]
- Domain-wall & Overlap [Kaplan] [Furman-Shamir] [Neuberger]
- Staggered [Susskind]
- Staggered Wilson & Overlap [Adams] [Hoelbling]

Wilson fermion

- $\bullet~\#$ of doublers reduced $16 \rightarrow 1$
- Chiral symmetry broken due to "mass term"

Wilson fermion

- # of doublers reduced $16 \rightarrow 1$
- Chiral symmetry broken due to "mass term"
- Phase structure

$$\left< ar{\psi} \gamma_5 \psi \right> \left\{ egin{array}{c} = 0 & ({\sf A} \ {\sf phase}) \
eq 0 & ({\sf B} \ {\sf phase}) \end{array}
ight.$$

Parity broken phase (Aoki phase)

Wilson fermion

- # of doublers reduced $16 \rightarrow 1$
- Chiral symmetry broken due to "mass term"
- Phase structure

Staggered Wilson fermion

- Staggered fermion with Wilson term (doubler sensitive mass)
- $\bullet~\#$ of doublers reduced
 - $4 \rightarrow 2$ Adams' type
 - $4 \rightarrow 1$ Hoelbling's type
- Chiral symmetry broken

Staggered Wilson fermion

- Staggered fermion with Wilson term (doubler sensitive mass)
- $\bullet~\#$ of doublers reduced
 - $4 \rightarrow 2$ Adams' type
 - $4 \rightarrow 1$ Hoelbling's type
- Chiral symmetry broken

Staggered Wilson fermion

- Staggered fermion with Wilson term (doubler sensitive mass)
- \bullet # of doublers reduced
 - $4 \rightarrow 2$ Adams' type
 - $4 \rightarrow 1$ Hoelbling's type
- Chiral symmetry broken

- Asymptotic free
- Spontaneous chiral symmetry breaking
- Exactly solvable in 2d at large N_f

- Asymptotic free
- Spontaneous chiral symmetry breaking
- Exactly solvable in 2d at large N_{f}

Toy model for 4d QCD

- Asymptotic free
- Spontaneous chiral symmetry breaking
- Exactly solvable in 2d at large N_f

Toy model for 4d QCD

• Phase structure of 4d QCD with staggered Wilson [Nakano et al.]

- Asymptotic free
- Spontaneous chiral symmetry breaking
- Exactly solvable in 2d at large N_f

Toy model for 4d QCD

- Phase structure of 4d QCD with staggered Wilson [Nakano et al.]
- GN model with Wilson fermion [Aoki-Higashijima]
 - Chiral limit [Izubuchi-Noaki-Ukawa] cf. [Izubuchi-Nagai]

Contents

1 Introduction

- 2 Gross-Neveu model with staggered Wilson fermion
- 3 Phase structure and Aoki phase

4 Chiral limit

Contents

Introduction

2 Gross-Neveu model with staggered Wilson fermion

3 Phase structure and Aoki phase

4 Chiral limit

Gross-Neveu model

$$\mathcal{L} = \bar{\psi}_a (i\partial \!\!\!/ - m)\psi_a - rac{g^2}{2N}(\bar{\psi}_a\psi_a)^2$$

- $\bullet \ N \text{-flavor system} \longrightarrow \mathsf{Global} \ \mathrm{U}(N) \ \mathrm{symmetry}$
- 2d version of NJL model

Gross-Neveu model

$$\mathcal{L} = ar{\psi}_a (i\partial \!\!\!/ - m)\psi_a - rac{g^2}{2N} (ar{\psi}_a \psi_a)^2$$

- N-flavor system \longrightarrow Global U(N) symmetry
- 2d version of NJL model
- Asymptotic free
- Chiral \mathbb{Z}_4 (\mathbb{Z}_2) symmetry: $\psi \to e^{i\frac{\pi}{2}\gamma_5}\psi$, $\bar{\psi} \to \bar{\psi}e^{i\frac{\pi}{2}\gamma_5}$
- Exactly solvable in 2d at large N

"Chiral" Gross-Neveu model

$$\mathcal{L} = \bar{\psi}_a (i\partial \!\!\!/ - m)\psi_a - \frac{g^2}{2N} \left[(\bar{\psi}_a \psi_a)^2 + (\bar{\psi}_a i \gamma_5 \psi_a)^2 \right]$$

• Chiral U(1) symmetry at m = 0:

$$\psi \longrightarrow e^{i\theta\gamma_5}\psi, \qquad \bar{\psi} \longrightarrow \bar{\psi}e^{i\theta\gamma_5}\psi$$

"Chiral" Gross-Neveu model

$$\mathcal{L} = \bar{\psi}_a (i\partial \!\!\!/ - m)\psi_a - \frac{g^2}{2N} \left[(\bar{\psi}_a \psi_a)^2 + (\bar{\psi}_a i\gamma_5 \psi_a)^2 \right]$$

• Chiral U(1) symmetry at m = 0:

$$\psi \longrightarrow e^{i\theta\gamma_5}\psi, \qquad \bar{\psi} \longrightarrow \bar{\psi}e^{i\theta\gamma_5}\psi$$

- \bullet Spontaneous chiral U(1) breaking \longrightarrow NG mode
 - Remark: IR behavior

• GN model on the lattice?

• GN model on the lattice? [Aoki-Higashijima]

Gross-Neveu model with Wilson fermion

$$S_{\text{WGN}} = \frac{1}{2} \sum_{n,\mu} \bar{\psi}_n \gamma_\mu \left(\psi_{n+\hat{\mu}} - \psi_{n-\hat{\mu}} \right) + \sum_n \bar{\psi}_n M \psi_n + S_W \\ - \frac{g^2}{2N} \sum_n \left[\left(\bar{\psi}_n \psi_n \right)^2 + \left(\bar{\psi}_n i \gamma_5 \psi_n \right)^2 \right]$$

• Wilson term

$$S_{\rm W} = -\frac{r}{2} \sum_{n,\mu} \bar{\psi}_n \left(\psi_{n+\hat{\mu}} - 2\psi_n + \psi_{n-\hat{\mu}} \right)$$

• Staggered fermion

• Staggered fermion

 $\bullet\,$ spin-diagonalization: $\psi \longrightarrow \chi$

• chirality:
$$\gamma_5 \longrightarrow \epsilon_n = (-1)^n \simeq \gamma_5 \otimes \xi_5$$

 $\left(\bar{\psi}_n i \gamma_5 \psi_n\right)^2 \longrightarrow (\bar{\chi}_n i \epsilon_n \chi_n)^2 = -(\bar{\chi}_n \chi_n)^2 ?$

• Staggered fermion

• spin-diagonalization: $\psi \longrightarrow \chi$

• chirality:
$$\gamma_5 \longrightarrow \epsilon_n = (-1)^n \simeq \gamma_5 \otimes \xi_5$$

 $\left(\bar{\psi}_n i \gamma_5 \psi_n\right)^2 \longrightarrow (\bar{\chi}_n i \epsilon_n \chi_n)^2 = -(\bar{\chi}_n \chi_n)^2 ?$

Summation over spinor components —> sublattice

- Staggered fermion
 - spin-diagonalization: $\psi \longrightarrow \chi$

• chirality:
$$\gamma_5 \longrightarrow \epsilon_n = (-1)^n \simeq \gamma_5 \otimes \xi_5$$

 $\left(\bar{\psi}_n i \gamma_5 \psi_n\right)^2 \longrightarrow (\bar{\chi}_n i \epsilon_n \chi_n)^2 = -(\bar{\chi}_n \chi_n)^2 ?$

Summation over spinor components —> sublattice

$$\left(\bar{\psi}_n i \gamma_5 \psi_n\right)^2 \longrightarrow \left(\sum_A i \epsilon_A \bar{\chi}_A \chi_A\right)^2$$

• Sublattice structure: $n = 2\mathcal{N} + A$

• Wilson term for staggered fermion [Adams] [Hoelbling] cf. [Goltermann-Smit] [Goltermann]

$$S_{\rm stW} \simeq -i\epsilon_n \eta_1 \eta_2 \cos p_1 \cos p_2 \longrightarrow \mathbb{1} \otimes \tau_3$$

taste-splitting mass

Gross-Neveu model with staggered Wilson fermion

$$S_{\text{stWGN}} = \frac{1}{2} \sum_{n,\mu} \eta_{\mu} \bar{\chi}_{n} (\chi_{n+\hat{\mu}} - \chi_{n-\hat{\mu}}) + \sum_{n} \bar{\chi}_{n} M \chi_{n} + S_{\text{stW}}$$
$$- \frac{g^{2}}{2N} \sum_{\mathcal{N}} \left[\left(\sum_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2} + \left(\sum_{A} i \epsilon_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2} \right]$$

Gross-Neveu model with staggered Wilson fermion

$$S_{\text{stWGN}} = \frac{1}{2} \sum_{n,\mu} \eta_{\mu} \bar{\chi}_{n} (\chi_{n+\hat{\mu}} - \chi_{n-\hat{\mu}}) + \sum_{n} \bar{\chi}_{n} M \chi_{n} + S_{\text{stW}}$$
$$- \frac{g^{2}}{2N} \sum_{\mathcal{N}} \left[\left(\sum_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2} + \left(\sum_{A} i \epsilon_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2} \right]$$

• Analysis with auxiliary fields to eliminate the 4pt interactions

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 12 / 26

Contents

Introduction

2 Gross-Neveu model with staggered Wilson fermion

3 Phase structure and Aoki phase

4 Chiral limit

5 Summary

Introduce auxiliary fields (mesons) to eliminate the 4pt interactions

- Introduce auxiliary fields (mesons) to eliminate the 4pt interactions
- Integrate out the fermionic fields, and then obtain the effective action for mesons

- Introduce auxiliary fields (mesons) to eliminate the 4pt interactions
- Integrate out the fermionic fields, and then obtain the effective action for mesons
- Solve the saddle point equation, giving the gap equation

Bosonization

$$Z = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi \, e^{-S_{\rm stWGN}} = \int \mathcal{D}\sigma \mathcal{D}\pi \, e^{-S_{\rm eff}(\sigma,\pi)}$$

- Auxiliary "mesonic" fields: $\bar{\chi}_n \chi_n \to \sigma$, $\epsilon_n \bar{\chi}_n \chi_n \to \pi$
- Effective action for mesons

$$S_{\text{eff}} = \frac{1}{2g^2} \sum_{\mathcal{N}} \left(\sigma_{\mathcal{N}}^2 + \pi_{\mathcal{N}}^2 \right) - \text{Tr } \log D$$

$$D_{n,m} = (\sigma_{\mathcal{N}} + i\epsilon_n \pi_{\mathcal{N}})\delta_{n,m} + \frac{1}{2}\eta_{\mu} \left(\delta_{n+\hat{\mu},m} - \delta_{n-\hat{\mu},m}\right) + (S_{\text{stW}})_{n,m}$$

• Saddle point equation:

$$\frac{\delta S_{\text{eff}}}{\delta \sigma} = \frac{\delta S_{\text{eff}}}{\delta \pi} = 0$$

• We now find a spatially constant solution σ_0 , π_0

• Impose the critical condition: $\pi=0$

$$\begin{split} \frac{M_c}{g^2} &= 4 \int \frac{d^2k}{(2\pi)^2} \frac{2c_1^2 c_2^2 \sigma_0}{((\sigma_0 + c_1 c_2)^2 + \pi_0^2 + s^2)((\sigma_0 - c_1 c_2)^2 + \pi_0^2 + s^2)} \\ \frac{1}{g^2} &= 4 \int \frac{d^2k}{(2\pi)^2} \frac{\sigma_0^2 + s^2 + c_1^2 c_2^2}{((\sigma_0 + c_1 c_2)^2 + \pi_0^2 + s^2)((\sigma_0 - c_1 c_2)^2 + \pi_0^2 + s^2)} \\ \bullet \ c_\mu &= \cos \frac{k_\mu}{2}, \ s^2 = \sin^2 \frac{k_1}{2} + \sin^2 \frac{k_2}{2} \end{split}$$

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 16 / 26

• Phase diagram

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 17 / 26

Contents

Introduction

- 2 Gross-Neveu model with staggered Wilson fermion
- 3 Phase structure and Aoki phase

5 Summary

• Critical phase boundary suggests the chiral limit for the staggered Wilson fermion

- Critical phase boundary suggests the chiral limit for the staggered Wilson fermion
- but, even through renormalization?
 - chiral symmetry broken due to the (staggered) Wilson term

Renormalization effect

"Generic" Gross-Neveu model with staggered Wilson fermion

$$S_{\text{stWGN}} = \frac{1}{2} \sum_{n,\mu} \eta_{\mu} \bar{\chi}_{n} (\chi_{n+\hat{\mu}} - \chi_{n-\hat{\mu}}) + \sum_{n} \bar{\chi}_{n} M \chi_{n} + S_{\text{stW}}$$
$$- \frac{g_{\sigma}^{2}}{2N} \sum_{\mathcal{N}} \left(\sum_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2}$$
$$- \frac{g_{\pi}^{2}}{2N} \sum_{\mathcal{N}} \left(\sum_{A} i\epsilon_{A} \bar{\chi}_{2\mathcal{N}+A} \chi_{2\mathcal{N}+A} \right)^{2}$$

• Two kinds of coupling constants: (g_{σ}, g_{π})

Chiral symmetry is preserved only when $g_{\sigma} = g_{\pi}$ at the classical level, but broken due to the Wilson term.

• Effective action

$$\begin{split} \tilde{S}_{\text{eff}} &= -\left(\frac{M+1/a}{g_{\sigma}^2} + \frac{2}{a}C_1\right)\sigma_0 + \left(\frac{1}{2g_{\pi}^2} - \tilde{C}_0 + \frac{1}{\pi}\log 4a^2\right)\pi_0^2 \\ &+ \left(\frac{1}{2g_{\sigma}^2} - \tilde{C}_0 + 2C_2 + \frac{1}{\pi}\log 4a^2\right)\sigma_0^2 \\ &+ \frac{1}{\pi}(\sigma_0^2 + \pi_0^2)\log\frac{\sigma_0^2 + \pi_0^2}{e} + \mathcal{O}(a) \end{split}$$

• Effective action

$$\begin{split} \tilde{S}_{\text{eff}} &= -\left(\frac{M+1/a}{g_{\sigma}^2} + \frac{2}{a}C_1\right)\sigma_0 + \left(\frac{1}{2g_{\pi}^2} - \tilde{C}_0 + \frac{1}{\pi}\log 4a^2\right)\pi_0^2 \\ &+ \left(\frac{1}{2g_{\sigma}^2} - \tilde{C}_0 + 2C_2 + \frac{1}{\pi}\log 4a^2\right)\sigma_0^2 \\ &+ \frac{1}{\pi}(\sigma_0^2 + \pi_0^2)\log\frac{\sigma_0^2 + \pi_0^2}{e} + \mathcal{O}(a) \\ &\to \frac{1}{\pi}(\sigma_0^2 + \pi_0^2)\log\frac{\sigma_0^2 + \pi_0^2}{e\Lambda^2} \end{split}$$
 Chiral limit

• Effective action

$$\begin{split} \tilde{S}_{\text{eff}} &= -\left(\frac{M+1/a}{g_{\sigma}^2} + \frac{2}{a}C_1\right)\sigma_0 + \left(\frac{1}{2g_{\pi}^2} - \tilde{C}_0 + \frac{1}{\pi}\log 4a^2\right)\pi_0^2 \\ &+ \left(\frac{1}{2g_{\sigma}^2} - \tilde{C}_0 + 2C_2 + \frac{1}{\pi}\log 4a^2\right)\sigma_0^2 \\ &+ \frac{1}{\pi}(\sigma_0^2 + \pi_0^2)\log\frac{\sigma_0^2 + \pi_0^2}{e} + \mathcal{O}(a) \\ &\to \frac{1}{\pi}(\sigma_0^2 + \pi_0^2)\log\frac{\sigma_0^2 + \pi_0^2}{e\Lambda^2} \end{split}$$

 $\bullet\,$ tuning couplings & $\Lambda\mbox{-} parameter$

$$\frac{1}{2g_{\sigma}^{2}} = \tilde{C}_{0} - 2C_{2} + \frac{1}{\pi} \log\left(\frac{1}{4\Lambda^{2}a^{2}}\right), \quad \frac{1}{2g_{\pi}^{2}} = \tilde{C}_{0} + \frac{1}{\pi} \log\left(\frac{1}{4\Lambda^{2}a^{2}}\right)$$
$$M = -\frac{2g_{\sigma}^{2}}{a}C_{1} - 1, \qquad 2a\Lambda = \exp\left[\frac{\pi}{2}\tilde{C}_{0} - \pi C_{2} - \frac{\pi}{4g_{\sigma}^{2}}\right]$$

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 21 / 26

• Gap equation: $\pi_0 = 0$ with $g_{\sigma}^2 = 0.4$

"2nd order" phase boundary \longrightarrow other possibilities?

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 22 / 26

1st order σ -transition

Taro Kimura (U Tokyo/RIKEN)

Feb 2012 23 / 26

1st order σ **-transition**

• Order of π -transition

1st & 2nd order transition

Phase structure & Chiral limit

We can safely take chiral & continuum limit

• cf. Chial perturbation approach [Sharpe-Singleton]

Contents

Introduction

- 2 Gross-Neveu model with staggered Wilson fermion
- 3 Phase structure and Aoki phase

4 Chiral limit

Summary

- Staggered Wilson Gross-Neveu model as a toy model for QCD
- Phase structure of staggered Wilson GN model
 → Parity broken phase (Aoki phase)
- Chiral limit of the model
 - \longrightarrow Renormalization effect, safety of chiral limit

• Phase structure in QCD [Nakano et al.]