The QCD phase diagram: universality and continuity

Naoki Yamamoto (INT, University of Washington)

Yukawa Institute for Theoretical Physics February 21, 2012

<u>Outline</u>

- Introduction of QCD phase diagram
- Universality of phases in QCD and QCD-like theories
- A no-go theorem for critical phenomena
- Quark-hadron continuity/duality
- Refs: M. Hanada and NY, arXiv:1103.5480 (to appear in JHEP).Y. Hidaka and NY, arXiv:1110.3044 (to appear in PRL).

A conjectured QCD phase diagram

Finite µ phase transition (T=0)

Consider *T*=0.

- A baryon with excitation energy $m_B \mu_B$ can be created for $\mu_B > m_B$; Baryon (=fermion) forms a Fermi surface due to the Pauli principle.
- ▶ Phase transition at $\mu_{B} \approx m_{B}$ distinguishing between $n_{B}=0$ and $n_{B}>0$.

Large μ: color superconductivity (T=0)

➤ At high density, nuclear matter → quark matter (quark Fermi surface): weak-coupling due to asymptotic freedom

Large μ: color superconductivity (T=0)

➤ At high density, nuclear matter → quark matter (quark Fermi surface): weak-coupling due to asymptotic freedom

A conjectured QCD phase diagram

Phase diagrams of QCD-like theories

- > QCD at μ = 2 μ >0: chemical potentials μ & - μ for u & d quark (= π +)
 - \rightarrow Dirac eigenvalues for *u* & *d* are complex conjugate.
 - \rightarrow Positive fermion determinant (no sign problem)
- > Different gauge groups at $\mu_B > 0$ (instead of SU(*Nc*)):
 - SO(Nc) with any flavors: real

(similar to QCD with adjoint fermions)

- Sp(*Nc*) with even degenerate flavors: pseudo-real (similar to 2-color QCD; *Nc* "color" version of SU(2)=Sp(2))
- \rightarrow Positive fermion determinant (no sign problem)

Consider *T*=0. Son-Stephanov ('01)

- > At small μ :
 - π + with excitation energy $m_{\pi} \mu_{l}$ can be created for $\mu_{l} > m_{\pi}$.
 - π + (=boson) forms a Bose-Einstein condensation (BEC) at μ = m_{π} .

Consider *T*=0. Son-Stephanov ('01)

- > At small μ :
 - π + with excitation energy $m_{\pi} \mu_{l}$ can be created for $\mu_{l} > m_{\pi}$.
 - π + (=boson) forms a Bose-Einstein condensation (BEC) at $\mu = m_{\pi}$.
- > At large μ : Fermi surface of $u \& \overline{d}$ quarks
 - attractive interaction in color singlet channel: $3 \times \overline{3} = 1 + 8$
 - \rightarrow BCS pairing $\langle \bar{d}\gamma_5 u \rangle \neq 0$

Consider *T*=0. Son-Stephanov ('01)

- > At small μ :
 - π + with excitation energy $m_{\pi} \mu_{l}$ can be created for $\mu_{l} > m_{\pi}$.
 - π + (=boson) forms a Bose-Einstein condensation (BEC) at $\mu = m_{\pi}$.
- > At large μ : Fermi surface of $u \& \overline{d}$ quarks
 - attractive interaction in color singlet channel: $3 \times \overline{3} = 1 + 8$
 - \rightarrow BCS pairing $\langle \bar{d}\gamma_5 u \rangle \neq 0$
- Same quantum numbers of condensates/ symmetry breaking pattern:
 BEC-BCS crossover (continuity from hadronic to quark matter)

SO & Sp gauge theories at μ_B>0

2-color QCD and adjoint QCD also have similar phase diagrams.

Universality of phase diagrams

> Question: reason for similarity? What about QCD at μ > 0?

Universality of phase diagrams

> Question: reason for similarity? What about QCD at μ > 0?

- Main results: Hanada-NY ('11); Hidaka-NY ('11)
- 1. Whole phase diagrams are quantitatively *universal* in the large-*Nc* limit between QCD at $\mu > 0$ & SO/Sp gauge theories at $\mu > 0$.
- 2. Universality holds for QCD at $\mu_B > 0$ outside the BCS/BEC region.
- **3.** No-go theorem: QCD critical point is ruled out in QCD at $\mu_B > 0$ outside the BCS/BEC region.

Practically this makes it possible to evade the sign problem for a class of observables at least large *Nc* and hopefully *Nc*=3.

Universality of phase diagrams

Large-Nc dualities/equivalences

Maldacena ('98), ... strongly-coupled gauge theory weakly-coupled gravity theory AdS/QGP, AdS/QCD, AdS/CMT, ...

gauge/gravity duality

orbifold equivalence

Kachru-Silverstein ('98), ...

Cherman-Hanada-Robles-Llana; Cherman-Tiburzi; Hanada-NY; Hidaka-NY ('11)

Large-Nc dualities/equivalences

orbifold equivalence

Kachru-Silverstein ('98), ...

Cherman-Hanada-Robles-Llana; Cherman-Tiburzi; Hanada-NY; Hidaka-NY ('11)

[How to use]

1. Identify a discrete global symmetry of the original theory (parent).

[How to use]

- 1. Identify a discrete global symmetry of the original theory (parent).
- 2. Eliminate all the d.o.f.s in the parent theory not invariant under the discrete symmetry (projection).

[How to use]

- 1. Identify a discrete global symmetry of the original theory (parent).
- 2. Eliminate all the d.o.f.s in the parent theory not invariant under the discrete symmetry (projection).
- 3. This gives a new theory (daughter).

[How to use]

- 1. Identify a discrete global symmetry of the original theory (parent).
- 2. Eliminate all the d.o.f.s in the parent theory not invariant under the discrete symmetry (projection).
- 3. This gives a new theory (daughter).
- 4. A class of observables and correlators are shown to be identical between the parent and daughter at large *Nc* (orbifold equivalence).

[How to use]

- 1. Identify a discrete global symmetry of the original theory (parent).
- 2. Eliminate all the d.o.f.s in the parent theory not invariant under the discrete symmetry (projection).
- 3. This gives a new theory (daughter).
- 4. A class of observables and correlators are shown to be identical between the parent and daughter at large *Nc* (orbifold equivalence).

[Caution]

Valid as long as the discrete symmetry is not broken spontaneously.

Start with SO(2*Nc*) theory at μ _B>0 as a parent. Cherman *et al.* ('11)

Start with SO(2*Nc*) theory at $\mu_B > 0$ as a parent. Cherman *et al.* ('11)

1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c), \quad e^{i\pi/2} \in \mathrm{U}(1)_B$

Start with SO(2*Nc*) theory at $\mu_B > 0$ as a parent. Cherman *et al.* ('11)

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c), \quad e^{i\pi/2} \in \mathrm{U}(1)_B$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = i J_c \psi^{SO}$

Start with SO(2*Nc*) theory at $\mu_B > 0$ as a parent. Cherman *et al.* ('11)

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c), \quad e^{i\pi/2} \in \mathrm{U}(1)_B$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = i J_c \psi^{SO}$
- 3. Daughter theory: $U(N_c) \approx SU(N_c)$ gauge theory at $\mu_B > 0$ up to $O(1/N_c^2)$.

$$A^{\text{proj}}_{\mu} = \begin{pmatrix} (A^{\text{U}}_{\mu})^C & 0\\ 0 & A^{\text{U}}_{\mu} \end{pmatrix}, \quad \psi^{\text{proj}} = \begin{pmatrix} 0\\ \psi^{\text{U}} \end{pmatrix}$$

Start with SO(2*Nc*) theory at $\mu_B > 0$ as a parent. Cherman *et al.* ('11)

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c), \quad e^{i\pi/2} \in \mathrm{U}(1)_B$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = i J_c \psi^{SO}$
- 3. Daughter theory: $U(N_c) \approx SU(N_c)$ gauge theory at $\mu_B > 0$ up to $O(1/N_c^2)$.

$$A^{\text{proj}}_{\mu} = \begin{pmatrix} (A^{\text{U}}_{\mu})^C & 0\\ 0 & A^{\text{U}}_{\mu} \end{pmatrix}, \quad \psi^{\text{proj}} = \begin{pmatrix} 0\\ \psi^{\text{U}} \end{pmatrix}$$

4. Orbifold equivalence: $\langle \bar{\psi}\psi \rangle^{SO} = \langle \bar{\psi}\psi \rangle^{SU}$ etc.

Start with SO(2*Nc*) theory at μ _B>0 as a parent. Cherman *et al.* ('11)

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c), \quad e^{i\pi/2} \in \mathrm{U}(1)_B$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = i J_c \psi^{SO}$
- 3. Daughter theory: $U(N_c) \approx SU(N_c)$ gauge theory at $\mu_B > 0$ up to $O(1/N_c^2)$.

$$A^{\rm proj}_{\mu} = \begin{pmatrix} (A^{\rm U}_{\mu})^C & 0\\ 0 & A^{\rm U}_{\mu} \end{pmatrix}, \quad \psi^{\rm proj} = \begin{pmatrix} 0\\ \psi^{\rm U} \end{pmatrix}$$

4. Orbifold equivalence: $\langle \bar{\psi}\psi \rangle^{SO} = \langle \bar{\psi}\psi \rangle^{SU}$ etc.

[Caution]

- $Z_4 \in U(1)_B$ broken in the BCS-BEC crossover.
- $Z_4 \in SU(2)$ iso unbroken from SO(2Nc) to QCD at $\mu > 0$ everywhere.

"Family Tree" of QCD and QCD-like theories

Phase-quenched approximation is exact at large *Nc* for a class of observables outside BEC/BCS.

"Family Tree" of QCD and QCD-like theories

Phase-quenched approximation is exact at large *Nc* for a class of observables outside BEC/BCS.

> Consider $\langle \overline{q}q \rangle$ at finite μ_{I} or μ_{B} for degenerate 2 flavors u & d.

- > Consider $\langle \overline{q}q \rangle$ at finite μ_{I} or μ_{B} for degenerate 2 flavors u & d.
 - additional flavor loops suppressed at large Nc
 - \rightarrow no mixing between *u* & *d* at leading order in 1/*Nc*.

- > Consider $\langle \overline{q}q \rangle$ at finite μ_{I} or μ_{B} for degenerate 2 flavors u & d.
 - additional flavor loops suppressed at large Nc
 - \rightarrow no mixing between *u* & *d* at leading order in 1/*Nc*.
 - sign of $\pm \mu$ for *d* doesn't matter due to charge conjugation.
 - $\rightarrow \langle \overline{q}q \rangle(\mu_B) = \langle \overline{q}q \rangle(\mu_I)$ (deconfinement argued similarly in Toublan 05)

- > Consider $\langle \overline{q}q \rangle$ at finite μ_{I} or μ_{B} for degenerate 2 flavors u & d.
 - additional flavor loops suppressed at large Nc
 - \rightarrow no mixing between *u* & *d* at leading order in 1/*Nc*.
 - sign of $\pm \mu$ for *d* doesn't matter due to charge conjugation.
 - $\rightarrow \langle \overline{q}q \rangle (\mu_B) = \langle \overline{q}q \rangle (\mu_I)$ (deconfinement argued similarly in Toublan 05)
- > Not applicable to fermion-loop corrections (where u & d are mixed). \rightarrow equivalence in the 't Hooft limit.

- > Consider $\langle \overline{q}q \rangle$ at finite μ_{I} or μ_{B} for degenerate 2 flavors u & d.
 - additional flavor loops suppressed at large Nc
 - \rightarrow no mixing between *u* & *d* at leading order in 1/*Nc*.
 - sign of $\pm \mu$ for *d* doesn't matter due to charge conjugation.
 - $\rightarrow \langle \overline{q}q \rangle (\mu_B) = \langle \overline{q}q \rangle (\mu_I)$ (deconfinement argued similarly in Toublan 05)
- > Not applicable to fermion-loop corrections (where u & d are mixed). \rightarrow equivalence in the 't Hooft limit.
- > Not applicable to the quantity $\langle \pi^{\pm} \rangle$ (where *u* & *d* are mixed).
 - \rightarrow equivalence for a class of observables

- > Consider $\langle \overline{q}q \rangle$ at finite μ_I or μ_B for degenerate 2 flavors u & d.
 - additional flavor loops suppressed at large Nc
 - \rightarrow no mixing between *u* & *d* at leading order in 1/*Nc*.
 - sign of $\pm \mu$ for *d* doesn't matter due to charge conjugation.
 - $\rightarrow \langle \overline{q}q \rangle (\mu_B) = \langle \overline{q}q \rangle (\mu_I)$ (deconfinement argued similarly in Toublan 05)
- > Not applicable to fermion-loop corrections (where u & d are mixed). \rightarrow equivalence in the 't Hooft limit.
- ► Not applicable to the quantity $\langle \pi^{\pm} \rangle$ (where *u* & *d* are mixed). → equivalence for a class of observables
- Not applicable if $\langle \pi^{\pm} \rangle \neq 0$ in the ground state (where *u* & *d* are mixed).
 → equivalence outside BEC/BCS region

A recent lattice result

> Critical temperature of chiral transition at small μ_{l} and μ_{B} .

$$\frac{T_c(\mu)}{T_c(0)} = 1 + a_1 \left(\frac{\mu}{\pi T}\right)^2$$
Cea-Cosmai-D'Elia-Papa-Sanfilippo
arXiv:1110.3910

 $a_1 = -0.470(13)$ isospin chemical potential $a_1 = -0.522(10)$ quark chemical potential.

(staggered fermion, ma=0.05, $16^3 \times 4$ lattice)

Universality (or phase-quenching) looks approximately valid up to difference ~10% in three-color QCD.

Reminder: QCD Dirac operator

> QCD Dirac operator at μ =0:

$$\mathcal{D} = D + m \text{ with } D = \gamma_{\mu}(\partial_{\mu} + igA_{\mu})$$

- anti-Hermiticity: $D^{\dagger} = -D$
- chiral symmetry: $\gamma_5 D \gamma_5 = -D$
- $\rightarrow \gamma_5$ Hermiticity: $\gamma_5 \mathcal{D} \gamma_5 = \mathcal{D}^{\dagger}$

This ensures the positivity $\det D \ge 0$ (which is not true at $\mu_{B} > 0$).

- > QCD at μ >0, $\mathcal{D}(\mu_I) = D + \frac{\mu_I}{2}\gamma_0\tau_3 + m$
 - property: $\tau_1 \gamma_5 \mathcal{D} \gamma_5 \tau_1 = \mathcal{D}^{\dagger} \rightarrow \text{positivity at any } \mu > 0$

<u>QCD inequalities (µ=0)</u>

Solution Consider correlator of $M_{\Gamma} = \bar{\psi} \Gamma \psi$ Weingarten; Witten; Nussinov ('83)

$$\begin{split} \langle M_{\Gamma}(x)M_{\Gamma}^{\dagger}(y)\rangle_{\psi,A} &= -\langle \operatorname{tr}[S_{A}(x,y)\Gamma \underline{S}_{A}(y,x)\overline{\Gamma}]\rangle_{A} & \overline{\Gamma} \equiv \gamma_{0}\Gamma^{\dagger}\gamma_{0} \\ &= \langle \operatorname{tr}[S_{A}(x,y)\Gamma i\gamma_{5}S_{A}^{\dagger}(x,y)i\gamma_{5}\overline{\Gamma}]\rangle_{A} \quad (`.`\gamma_{5} \operatorname{Hermiticity}) \\ &\leq \langle \operatorname{tr}[S_{A}(x,y)S_{A}^{\dagger}(x,y)]\rangle_{A}. \quad (`.` \operatorname{Cauchy-Schwarz ineq.}) \end{split}$$

becomes maximum when $\Gamma = i\gamma_5 \tau_A$ (meson is $\pi^{0,\pm}$)

- \succ Correlators behave $\sim e^{-m_{\Gamma}|x-y|}$ at large separation.
- > Thus we have $m_r \ge m_{\pi}$ (pion is the lightest meson).

This argument is not applicable to the flavor-singlet. Reason: contributions of flavor-disconnected diagrams

- Disconnected diagram may be suppressed phenomenologically.
 e.g.) Okubo-Zweig-lizuka rule: suppression of annihilation diagrams
- > It can be justified in the large- N_c limit. Witten ('79)

- ➤ Then QCD inequalities are applicable to the flavor singlet: $m_{\sigma} \ge m_{\pi}$ Turning on $m_q > 0$, we have $m_{\sigma} \ge m_{\pi} > 0$.
- > 2nd-order chiral transition implies $\xi = \infty$ or $m_{\sigma} = 0$ at some $T = T_c$, which is prohibited for any $m_q > 0$ from above constraint.

> Generalization to μ >0?: not straightforward due to lack of positivity.

- > Generalization to μ >0?: not straightforward due to lack of positivity.
- Still it is possible in QCD-like theories at μ >0 preserving positivity. e.g., QCD at any μ_{l} , $\langle M_{\Gamma}(x)M_{\Gamma}^{\dagger}(y)\rangle_{\psi,A} \leq \langle \operatorname{tr}[S_{A}(x,y)S_{A}^{\dagger}(x,y)]\rangle_{A}$ inequality saturated when $\Gamma = i\gamma_{5}\tau_{1,2}$ (meson is π^{\pm})

 $\rightarrow m_{\sigma} \ge m_{\pi^{\pm}} > 0$ for $m_q > 0 \rightarrow$ no 2nd-order chiral transition for $m_q > 0$

- > Generalization to μ >0?: not straightforward due to lack of positivity.
- Still it is possible in QCD-like theories at μ >0 preserving positivity. e.g., QCD at any μ_l , $\langle M_{\Gamma}(x)M_{\Gamma}^{\dagger}(y)\rangle_{\psi,A} \leq \langle \operatorname{tr}[S_A(x,y)S_A^{\dagger}(x,y)]\rangle_A$ inequality saturated when $\Gamma = i\gamma_5\tau_{1,2}$ (meson is π^{\pm})

 $\rightarrow m_{\sigma} \ge m_{\pi^{\pm}} > 0$ for $m_q > 0 \rightarrow$ no 2nd-order chiral transition for $m_q > 0$

> Via our universality, this result can be mapped to QCD at $\mu_B>0$ outside BEC/BCS region.

- > Generalization to μ >0?: not straightforward due to lack of positivity.
- Still it is possible in QCD-like theories at μ >0 preserving positivity. e.g., QCD at any μ_i , $\langle M_{\Gamma}(x)M_{\Gamma}^{\dagger}(y)\rangle_{\psi,A} \leq \langle \operatorname{tr}[S_A(x,y)S_A^{\dagger}(x,y)]\rangle_A$ inequality saturated when $\Gamma = i\gamma_5\tau_{1,2}$ (meson is π^{\pm})

 $\rightarrow m_{\sigma} \ge m_{\pi^{\pm}} > 0$ for $m_q > 0 \rightarrow$ no 2nd-order chiral transition for $m_q > 0$

- ➢ Via our universality, this result can be mapped to QCD at μ ≥0 outside BEC/BCS region.
- Thus we obtain an exact no-go theorem:

Critical phenomena (e.g. QCD critical point) are forbidden for $m_q>0$ outside BEC/BCS.

Hidaka-NY ('11)

<u>Remarks</u>

- > In this argument, we take large N_c only to justify 2 empirical facts:
 - suppression of sea quark effects (quenched approximation)
 - suppression of disconnected diagrams (OZI rule).
- In other words, the no-go theorem would be violated if either of them is not satisfied in real QCD.

Model results

Similar results obtained in NJL & PNJL models Andersen- Kyllingstad- Splittorff; Sakai-Sasaki-Kouno-Yahiro ('10)

<u>Lesson</u>

Nature somehow hides the QCD critical point and other interesting physics inside the region where the sign problem is maximally severe.

Quark-hadron continuity

- > QCD phase diagram at $\mu_B > 0$ where universality breaks down?
- Still there exists a similarity in Nc=Nf=3: quark-hadron continuity Schafer-Wilczek ('99); Baym-Hatsuda-Tachibana-NY ('06, '07, '08, '10);

<u>Nf=3 QCD at finite baryon density</u>

Nf=3 QCD at finite baryon density

- > At small μ_B : recent lattice QCD results by HAL QCD & NPLQCD collaborations ('11)
 - H dibaryon has the smallest excit. energy per baryon since $m_{\rm H}/2 < m_{\rm B}$.
 - For $\mu_B > m_H/2$, H dibaryon (= boson) forms BEC which breaks U(1)_B.

Nf=3 QCD at finite baryon density

- > At small μ_B : recent lattice QCD results by HAL QCD & NPLQCD collaborations ('11)
 - H dibaryon has the smallest excit. energy per baryon since $m_{\rm H}/2 < m_{\rm B}$.
 - For $\mu_B > m_H/2$, H dibaryon (= boson) forms BEC which breaks U(1)_B.
- At large μ_B: color flavor locking (CFL) Alford-Rajagopal-Wilczek ('99)
 - Diquark condensate: $X^{ia} = \epsilon^{ijk} \epsilon^{abc} \langle q_L^{bj} q_L^{ck} \rangle^*, \quad Y^{ia} = \epsilon^{ijk} \epsilon^{abc} \langle q_R^{bj} q_R^{ck} \rangle^*$ u,d,s r,g,b
 - Gauge invariant order parameter: $\Sigma = XY^{\dagger}$
 - \rightarrow Chiral & U(1)_B symmetries are broken.

Nf=3 QCD at finite baryon density

- > At small μ_B : recent lattice QCD results by HAL QCD & NPLQCD collaborations ('11)
 - H dibaryon has the smallest excit. energy per baryon since $m_{\rm H}/2 < m_{\rm B}$.
 - For $\mu_B > m_H/2$, H dibaryon (= boson) forms BEC which breaks U(1)_B.
- > At large μ_B : color flavor locking (CFL) Alford-Rajagopal-Wilczek ('99)
 - Diquark condensate: $X^{ia} = \epsilon^{ijk} \epsilon^{abc} \langle q_L^{bj} q_L^{ck} \rangle^*, \quad Y^{ia} = \epsilon^{ijk} \epsilon^{abc} \langle q_R^{bj} q_R^{ck} \rangle^*$ u,d,s r,g,b
 - Gauge invariant order parameter: $\Sigma = XY^{\dagger}$
 - \rightarrow Chiral & U(1)_B symmetries are broken.
- Same symmetry breaking pattern: quark-hadron continuity

QCD phase diagram (mu,d,s=0)

Color-flavor locking (contd.)

Elementary excitations

- Quarks: massive by the BCS pairing (Majorana mass).
- Gluons: massive by the Higgs mechanism (SU(3)c breaking).
- Light "pions": chiral & U(1)B symmetry breaking.

Hadron/CFL correspondence (Nc=Nf=3)

Phase	Hadron (confined)	CFL (Higgs)
symmetry breaking	$SU(3)_{L} \times SU(3)_{R} \times U(1)_{B}$ $\rightarrow SU(3)_{L+R}$	$SU(3)_{L} \times SU(3)_{R} \times SU(3)_{C} \times U(1)_{B}$ $\rightarrow SU(3)_{L+R+C}$
(pseudo)scalars	8 pseudo-scalars & 1 scalar	8 pseudo-scalars & 1 scalar
vectors	vector mesons	gluons
fermions	baryons	quarks
coupling constant	strong-coupling	weak-coupling
quarks	confined	condensed
monopoles	(condensed?)	confined

Existence of confined monopoles in CFL is recently shown. Gorsky-Shifman-Yung; Eto-Nitta-NY ('11)

Hadron/CFL correspondence (Nc=Nf=3)

Phase	Hadron (confined)	CFL (Higgs)
symmetry breaking	$SU(3)_{L} \times SU(3)_{R} \times U(1)_{B}$ $\rightarrow SU(3)_{L+R}$	$SU(3)_{L} \times SU(3)_{R} \times SU(3)_{C} \times U(1)_{B}$ $\rightarrow SU(3)_{L+R+C}$
(pseudo)scalars	8 pseudo-scalars & 1 scalar	8 pseudo-scalars & 1 scalar
vectors	vector mesons	gluons
fermions	baryons correst	ondence quarks
coupling constant	strong-coupling	weak-coupling
quarks	confined	condensed
monopoles	(condensed?) electrom	agnetic dual? confined

Existence of confined monopoles in CFL is recently shown. Gorsky-Shifman-Yung; Eto-Nitta-NY ('11)

Summary & Outlook

- Universality of phases in QCD and QCD-like theories at large Nc, which seems approximately valid even at Nc=3
 → future lattice QCD applications
- Universality can be shown in all effective & holographic models (PNJL, Sakai-Sugimoto models, ...): e.g., phase-quench for Polyakov loop up to one-meson-loop corrections. Hanada-Matsuo-NY, to appear.
- A no-go theorem for chiral critical phenomena.
- The quark-hadron continuity appears in the phase diagrams with flavor symmetry.
- Flavor symmetry breaking & finite *Nc* effects may be crucial for the real dense matter.

What are (aren't) equivalent?

Not all the quantities are equivalent in the orbifold equivalence.

- Projection symmetry must be unbroken.
- Observables must keep the projection symmetry (neutral).
- Symmetry breaking patterns, quantum numbers of the condensates can be different, but their magnitudes are the same.
- Example: BCS gap (inside the BEC-BCS crossover)

$$\begin{split} \Delta_{\mu_B}^{\rm SU} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{6N_c}{N_c+1}}\right) &\longrightarrow 0 \\ \Delta_{\mu_I}^{\rm SU} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{6N_c}{N_c^2-1}}\right) & \text{`t Hooft limit (large Nc, g^2Nc fixed)} \\ \Delta_{\mu_B}^{\rm SO} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{12}{2N_c-1}}\right) &\longrightarrow \sim \mu \exp\left(-\pi^2\sqrt{\frac{6}{g^2N_c}}\right) \\ \Delta_{\mu_B}^{\rm Sp} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{12}{2N_c+1}}\right) &\longrightarrow \sim \mu \exp\left(-\pi^2\sqrt{\frac{6}{g^2N_c}}\right) \end{split}$$

Perturbative proof

Bershadsky-Johansen ('98)

- $\int J^{n_3} \quad \text{Insert} \quad \mathcal{P}(A^{\text{SO}}_{\mu}) = \frac{1}{2} \left(A^{\text{SO}}_{\mu} + J_c A^{\text{SO}}_{\mu} J_c^{-1} \right)$ for each propagator.
 - Take the same 't Hooft coupling.
 - Difference comes from color factors.
 - Condition: $tr(J_c^n) = 0$, when $J_c^n \neq \pm \mathbf{1}_{2N_c}$

 $\sum_{n_i=0,1} \left(\frac{1}{2}\right)^{N_P} \cdot \operatorname{tr}(J^{-n_1}J^{n_4}J^{n_5}) \cdot \operatorname{tr}(J^{-n_2}J^{-n_4}J^{n_6}) \cdot \operatorname{tr}(J^{-n_3}J^{-n_5}J^{-n_6}) \cdot \operatorname{tr}(J^{n_1}J^{n_2}J^{n_3})$ $= 2^{-6} \cdot 2^{6-3} \cdot 2^4 = 2$

Generally, $2^{-N_P} \cdot 2^{N_P - (N_L - 1)} \cdot 2^{N_L} = 2$ for any planar diagrams.

From SO(2Nc) to SU(Nc) at finite μι

Start with SO(2*Nc*) gauge theory at μ *B*>0.

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c)$ $J_i = -i\sigma_2 \otimes \mathbf{1}_{N_f/2} \in \mathrm{SU}(2)_{\mathrm{iso}}$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = J_c \psi^{SO} J^{-1}_i$
- 3. Daughter theory: $U(Nc) \approx SU(Nc)$ gauge theory at $\mu > 0$.

$$A^{\text{proj}}_{\mu} = \begin{pmatrix} (A^{\text{U}}_{\mu})^C & 0\\ 0 & A^{\text{U}}_{\mu} \end{pmatrix}, \quad \psi^{\text{proj}} = \begin{pmatrix} \psi^{\text{U}}_{+}\\ \psi^{\text{U}}_{-} \end{pmatrix}$$

4. Orbifold equivalence: $\langle \bar{\psi}\psi \rangle^{SO} = \langle \bar{\psi}\psi \rangle^{SU}$ etc.

[Caution]

• $Z_4 \in SU(2)$ iso unbroken from SO(2Nc) to QCD at $\mu > 0$ everywhere.

Approximate universality in real QCD

> One can check the universality (e.g. BCS gap) at sufficiently large μ :

$$\Delta_{\mu_B}^{\rm SO} \sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{12}{2N_c - 1}}\right) \xrightarrow{\text{ratios}} \sqrt{\frac{2(N_c^2 - 1)}{N_c(2N_c - 1)}} = \begin{cases} 1.033 & (N_c = 3)\\ 1 & (N_c = \infty) \end{cases}$$
$$\Delta_{\mu_B}^{\rm SD} \sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{6N_c}{N_c^2 - 1}}\right) \xrightarrow{\sim} \sqrt{\frac{2(N_c^2 - 1)}{N_c(2N_c - 1)}} = \begin{cases} 0.873 & (N_c = 3)\\ 1 & (N_c = \infty) \end{cases}$$

- Universality of phase diagrams can also be shown in effective models of QCD, e.g., chiral random matrix models.
 - chiral unitary matrix model
 Klein-Toublan-Verbaarschot ('03)

Hanada-NY ('11)

generalized to all the universality classes

<u>Remarks</u>

- > QCD phase diagram at μ B>0 (nuclear domain) qualitatively changes as a function of *Nc* inside BEC/BCS region:
 - no nuclear liquid-gas transition at large *Nc* Torrieri-Mishustin ('10).
 - no color superconductivity Deryagin-Grigoriev-Rubakov ('92); Shuster-Son ('00).

- > QCD phase diagram at μ B>0 is similar between Nc=3 and large Nc outside BEC/BCS region: chiral symmetry breaking/restoration.
- The whole phase diagrams of QCD-like theories (including BEC/BCS region) do not change qualitatively as a function of Nc.
- Universality is valid where strong Nc-dependence is absent.

<u>Remarks</u>

- > QCD phase diagram at μ B>0 (nuclear domain) qualitatively changes as a function of *Nc* inside BEC/BCS region:
 - no nuclear liquid-gas transition at large *Nc* Torrieri-Mishustin ('10).
 - no color superconductivity Deryagin-Grigoriev-Rubakov ('92); Shuster-Son ('00).

- > QCD phase diagram at μ B>0 is similar between Nc=3 and large Nc outside BEC/BCS region: chiral symmetry breaking/restoration.
- The whole phase diagrams of QCD-like theories (including BEC/BCS region) do not change qualitatively as a function of Nc.
- Universality is valid where strong Nc-dependence is absent.