Comments on lattice chiral symmetry and minimal doubling

Michael Creutz

Brookhaven Lab

Outline

- Chiral symmetry in mass parameter space
- The anomaly and lattice complications
- Topology and doublers
- Minimal doubling
- Point split operators
- Counterterms

Frame the discussion in the path integral formulation

$$Z = \int (dA)(d\psi)(d\overline{\psi}) \exp(-S_g(A) + \overline{\psi}D\psi) = \int (dA)|D(A)|e^{-S_g(A)}$$

• Concentrate on the determinant of the Dirac matrix |D(A)|

"Continuum" picture

$$D = K + M$$

$$K = \gamma_{\mu}(\partial_{\mu} + igA_{\mu}) = -K^{\dagger} = -\gamma_{5}K\gamma_{5}$$

$$M^{\dagger} = M = \gamma_{5}M\gamma_{5}$$

• introduce Θ later

Chiral symmetry as a symmetry in parameter space

•
$$[K, \gamma_5]_+ = 0$$
 implies

 $K = e^{i\omega_i\tau_i\gamma_5} K e^{i\omega_i\tau_i\gamma_5}$

• since $(Tr)\tau_i = 0$

 $|e^{i\omega_i\tau_i\gamma_5}| = \exp(i\omega_i \operatorname{Tr}(\tau_i\gamma_5)) = 1$

• therefore

$$|K+M| = |K+e^{i\omega_i\tau_i\gamma_5}Me^{i\omega_i\tau_i\gamma_5}$$

Physics unchanged with a modified mass matrix

$$M \longrightarrow e^{i\omega_i \tau_i \gamma_5} M e^{i\omega_i \tau_i \gamma_5}$$

Combined with the vector counterpart

 $M \longrightarrow e^{-i\omega_i \tau_i} M e^{i\omega_i \tau_i},$

 $SU(N_f)\otimes SU(N_f)$ symmetry

• symmetry of the massive theory in parameter space.

Specific example

• for two degerate flavors the mass terms

• all give equivalent theories

Wine bottle analogy $V \sim (\sigma^2 + \vec{\pi}^2 - v^2)^2$

- all tilt directions are equivalent
- basis for twisted mass

lattice artifacts improved

The anomaly

 $M \longrightarrow e^{i\theta\gamma_5}M$ not a valid symmetry

• mixes σ with η'

• η' gets extra mass from topology details depend on specific cutoff involve complications in defining γ_5

Fujikawa relates fermion measure and the index theorem

- in gauge field with topology, K(A) has zero modes
- eigenstates of γ_5
- winding number $\nu = n_+ n_-$

Use \boldsymbol{K} to cutoff high modes of the Dirac operator

• zero modes contribute to
$${
m Tr}~\gamma_5$$

$$\operatorname{Tr}\gamma_{5} \to \operatorname{Tr}(\gamma_{5}e^{-K^{\dagger}K/\Lambda^{2}})$$
$$= \sum_{i} \langle \psi_{i} | \gamma_{5}e^{-K^{\dagger}K/\Lambda^{2}} | \psi_{i} \rangle$$
$$= \nu \sim \int F\tilde{F}$$

• expand in powers of K

at K^4 ultraviolet divergence cancels $1/\Lambda^4$

In the path integral, configurations weighted by $|e^{i\theta \operatorname{Tr}\gamma_5}| = e^{i\theta N_f \nu}$

Leaving the usual CP violating parameter Θ of QCD

 $m \leftrightarrow -m$ theories not equivalent for N_f odd

- -1 is not in SU(2N+1)
- $-m\overline{\psi}\psi$ gives the $\Theta = \pi$ theory
- spontaneous CP violation expected $(N_f > 1)$

purely non-perturbative

Two light flavors with non-degenerate mass

$$m_{\pi_0}^2 \sim \frac{m_u + m_d}{2} - c \left(m_u - m_d \right)^2 + O(m_q^3)$$

- *c* is a "low energy constant"
- associated with isospin breaking and $\pi_0 \eta \eta'$ mixing lowers m_{π_0}

Negative $m_{\pi_0}^2$ can give pion condensation

Mass gap does not vanish when only one quark is massless

- no singularity along $m_u = 0$ axis
- scale dependence in defining a massless up quark

Isospin breaking

$$\frac{m_{\pi_0}^2}{m_{\pi_+}^2} = 1 - 2C \frac{(m_d - m_u)^2}{m_d + m_u}$$

- in continuum limit either
 - C diverges

quark mass ratios not constant

Mass independent regularization tricky

- not natural with lattice regulator
- perturbative matching requires caution

Lattice complications

Lattice at finite volume has no infinities

• how can an anomaly appear?

Consider any lattice Dirac operator D

• assume gamma five hermiticity $\gamma_5 D \gamma_5 = D^{\dagger}$

all operators in practice satisfy this (except twisted mass)

Divide D into hermitean and antihermitean parts

 $K = (D - D^{\dagger})/2$ $M = (D + D^{\dagger})/2$

Then

 $[K, \gamma_5]_+ = 0$ $[M, \gamma_5]_- = 0$

 $M \to e^{i\theta\gamma_5}M$ an exact symmetry of the determinant

• Where is the anomaly?

Naive fermions solve this with doublers

- half use γ_5 and half $-\gamma_5$
- the naive chiral symmetry is actually flavored

This carries through to staggered and minimally doubled actions

How about Wilson fermions?

- doublers given masses of order the cutoff
- the rotation $M \to e^{i\omega_i \gamma_5} M$ also rotates their phases

Physical Θ is a relative angle

 independently rotate the fermion mass and the Wilson term Seiler and Stamatescu

The overlap operator

- eigenvalues on a circle
- each zero eigenmode has counterpart on the opposite side
- rotation of Hermitean part rotates heavy mode as well
- anomaly brings in $\hat{\gamma}_5$

 $\nu = \mathrm{Tr}(\gamma_5 + \hat{\gamma}_5)/2$

Message for continuum QCD:

- physical Θ can be moved around
- placed on any one flavor at will

 Θ can be entirely moved into the top quark phase

- some aspects of the top quark are relevant to low energy physics!
- decoupling theorems don't apply non-perturbatively

Topology and doublers

Above effectively a restatement of Nielsen-Ninomiya

Consider the quark propagator at large momentum

• $D = i \not p + O(m, gA_{\mu})$

a gauge choice needed to keep things smooth

Study the leading part D = i p

• maintain $[ip, \gamma_5]_+ = 0$

Convenient gamma matrix convention

$$\gamma_5 = \sigma_3 \otimes 1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\gamma_4 = \sigma_2 \otimes 1 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\vec{\gamma} = \sigma_1 \otimes \vec{\sigma} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$$

Then
$$ip = \begin{pmatrix} 0 & z(p) \\ -z^*(p) & 0 \end{pmatrix}$$

with z a quaternion

 $z(p) = p_4 + i\vec{p} \cdot \vec{\sigma} = |p| \ g(p) \qquad g(p) \in SU(2) \sim S_3$

Michael Creutz BNL

For the path integral we want

$$|D| = z^* z = |z|^2 = p_4^2 + \vec{p}^2$$

Consider a surface of constant |D|

• a sphere in four dimensions of constant radius |p|

Over this sphere, z wraps non-trivially

• around a similar sphere in quaternionic space

On the lattice

Momentum bounded to the Brilloin zone

 $-\pi/a < p_{\mu} \le \pi/a$

- the propagator must be periodic in momentum space.
- Problem
 - at the edge of the Brilloin zone periodicity forbids wrapping

The propagator must unwrap somewhere

• if z remains finite, there must be another zero.

Not a bad thing

- anomaly says one flavor QCD has no chiral symmetry
- with N_f flavors chiral symmetry is $SU(N_f) \otimes SU(N_f) \otimes U(1)_B$ not $U(N_f) \otimes U(N_f)$.

Note: zeros at non-zero momentum not a problem

- redefining $\psi(x) \to e^{i\alpha_{\mu}x_{\mu}}\psi$
- moves a zero at $p_{\mu} = 0$ to $p_{\mu} = \alpha_{\mu}$

can always translate our zeros anywhere in momentum space.

Nielsen-Ninomiya conclusion:

- local lattice action that anticommutes with γ_5
- must have an even number of fermion species

Note: 3 is also bad

Wilson: unwrapping occurs at the doublers

• doublers given mass by Wilson term

Overlap: unwrapping occurs at the opposite side of the overlap circle

• each zero mode has a corresponding large real eigenvalue

Staggered: four tastes unwrap each other

• rooting: unwrapping forces unphysical singularities at $m_q = 0$ even with non-degenerate quarks

SLAC fermions: unphysical singularities in momentum space

Minimal doubling

• 2 species unwrap each other

Minimal doubling examples

(units with a = 1)

Karsten (1981); Wilczek (1987)

$$K = i \sum_{i=1}^{3} \gamma_i \sin(p_i) + \frac{i\gamma_4}{\sin(\alpha)} \left(\sum_{\mu=1}^{4} \cos(p_\mu) - \cos(\alpha) - 3 \right)$$

• propagator poles along p_4 axis at $\vec{p} = 0$, $p_4 = \pm \alpha$

- strictly antihermitean kinetic term, exactly anticommutes with γ_5 .
- similar to a Wilson term for space momenta with an $i\gamma_4$ factor

Tatsu Misumi

• "twisted ordering"

$$K = i\gamma_1(\sin(p_1) + \cos(p_2) - 1)$$

$$i\gamma_2(\sin(p_2) + \cos(p_3) - 1)$$

$$i\gamma_3(\sin(p_3) + \cos(p_4) - 1)$$

$$i\gamma_4(\sin(p_4) + \cos(p_1) - 1)$$

• propagator poles at p=(0,0,0,0) and $p=(\pi/2,\pi/2,\pi/2,\pi/2)$

• $1 \rightarrow C$ shifts distance between poles

Graphene motivated: generalize $z = e^{ip_1} + e^{ip_2} + 1$ to

$$z = e^{+i\sigma_1p_1} + e^{+i\sigma_1p_2} + e^{-i\sigma_1p_3} + e^{-i\sigma_1p_4} + e^{+i\sigma_2p_1} + e^{-i\sigma_2p_2} + e^{-i\sigma_2p_3} + e^{+i\sigma_2p_4} + e^{+i\sigma_3p_1} + e^{-i\sigma_3p_2} + e^{+i\sigma_3p_3} + e^{-i\sigma_3p_4} - 12C$$

- minimal doubling for $\frac{1}{2} < C < 1$.
- poles along major diagonal $p_{\mu} = p_{\nu} = \arccos(C)$

 $C=1/\sqrt{2}$ gives orthogonal lattice

 $C=\cos(\pi/5)$ gives 4d analogue of graphene/diamond

Point splitting

One field gives two particles

• separate them by combining fields at nearby points

For the Karsten Wilczek form above

• start with free fields momentum space

$$u(q) = \frac{1}{2} \left(1 + \frac{\sin(q_4 + \alpha)}{\sin(\alpha)} \right) \psi(q + \alpha e_4)$$
$$d(q) = \frac{1}{2} \Gamma \left(1 - \frac{\sin(q_4 - \alpha)}{\sin(\alpha)} \right) \psi(q - \alpha e_4)$$

• factor of $\Gamma = i\gamma_5\gamma_4$ corrects for opposite chirality of one mode

Go to position space and insert gauge fields

$$u_{x} = \frac{e^{i\alpha x_{4}}}{2} \left(\psi_{x} + i \frac{e^{-i\alpha}U_{x,x-e_{4}}\psi_{x-e_{4}} - e^{i\alpha}U_{x,x+e_{4}}\psi_{x+e_{4}}}{2\sin(\alpha)} \right)$$
$$d_{x} = \frac{\Gamma e^{-i\alpha x_{4}}}{2} \left(\psi_{x} - i \frac{e^{-i\alpha}U_{x,x-e_{4}}\psi_{x-e_{4}} - e^{i\alpha}U_{x,x+e_{4}}\psi_{x+e_{4}}}{2\sin(\alpha)} \right)$$

Meson operators ($\alpha = \pi/2$):

$$\pi_0(x) = \frac{i}{16} (4\overline{\psi}_x \gamma_5 \psi_x + \overline{\psi}_{x-e_4} \gamma_5 \psi_{x-e_4} + \overline{\psi}_{x+e_4} \gamma_5 \psi_{x+e_4} - \overline{\psi}_{x+e_4} V U \gamma_5 \psi_{x-e_4} - \overline{\psi}_{x-e_4} U U \gamma_5 \psi_{x+e_4})$$
$$\eta'(x) = \frac{1}{8} (\overline{\psi}_{x-e_4} U \gamma_5 \psi_x - \overline{\psi}_x U \gamma_5 \psi_{x-e_4} + \overline{\psi}_{x+e_4} U \gamma_5 \psi_x - \overline{\psi}_x U \gamma_5 \psi_{x+e_4})$$

- π_0 connects sites of the same parity
- η' connects even and odd sites; no on-site contribution

Tatsu and Taro: use $\overline{u}u$ and $\overline{d}d$ fields to split masses

- variation on the Wilson term.
- use this form to study eigenvalue flow and the index theorem

Counterterms

All actions pick a special direction

- s_{μ} points between the two zeros
- hypercubic symmetry broken

Capitani, Weber, Wittig, MC

- introduces new perturbative counterterms
- the lattice gets distorted

the distance between the zeros

fermion speed of light

gluon speed of light

Three relevant operators

$$\begin{split} \psi \gamma_{\mu} s_{\mu} \psi \\ \psi \gamma_{\mu} s_{\mu} s_{\nu} \partial_{\nu} \psi \\ F_{\mu\nu} F_{\mu\rho} s_{\nu} s_{\rho} \end{split}$$

One operator of naive dimension 3, similar to Wilson

• two of dimension 4

Are the counterterms really necessary?

• Need to remove the special direction

Not yet realized

Two possible approaches:

Zeros half way around Brilloin zone

- $p_{\mu} = 0$ and $p_{\mu} = p_{\nu} = +\pi$
- zeros in a body centered hyper-cubic arrangement

• adjusting C above gives extra zeros before reaching this

Distort lattice to form a hyperdiamond

- make 0, 0, 0, 0 to p, p, p, p distance equal p, p, p, p to $2\pi, 0, 0, 0$
- each site has five equidistant neighbors
- analog of graphene in 2-d

- $C = \cos(\pi/5)$ reaches these points
- but the action as we travel along different bonds not equivalent
- brings in higher harmonics

Can non-nearest hoppings fix these examples?

• can we remain local over hypercubes?

Summary

Chiral symmetry is a symmetry in mass parameter space

Breaking of continuum chiral symmetry gives rich physics

- spontaneous
- anomaly
- masses

Understanding this on the lattice is challenging but instructive

Minimal doubling maintains some chiral symmetry

- fast for simulations
- avoids rooting
- counterterm questions remain