

BPhys. Lett. B696 (2011) 422

- 2 Staggered Wilson
- 3 Symmetries
- 4 Free operators
- 5 Tests in 2D
- 6 First look at QCD

Outlook

Chiral symmetry

Staggered fermions
$\mathit{D}_{st} = \eta_\mu \mathit{D}_\mu$
4 species, no anomaly
$U(1)_{\epsilon}: \{D_{\mathrm{st}}, \epsilon\} = 0$
$\epsilon = (-1)^{x_1 + x_2 + x_3 + x_4}$
$\sim (\gamma_5 \otimes \xi_5)$

Momentum dependent mass (remove doublers) Positivity of $det(D_W)$:

- Naive operator: antihermitean, $\{D_N, \gamma_5\} = 0$
- Wilson term W: hermitean, $[W, \gamma_5] = 0$
- $\rightarrow D_W \gamma_5 = \gamma_5 D_W^{\dagger}$

 \rightarrow eigenvalues real or in complex conjugate pairs $\lambda_i = \lambda_{i*}^*$

Staggered Wilson term

Momentum (taste) dependent mass (remove doublers) Positivity of $det(D_A)$:

- Staggred operator: antihermitean, $\{D_N, \epsilon\} = 0$
- Wilson term A: hermitean, $[A, \epsilon] = 0$
- $\blacktriangleright D_{\mathsf{A}}\epsilon = \epsilon D_{\mathsf{A}}^{\dagger}$

→ eigenvalues real or in complex conjugate pairs $\lambda_i = \lambda_{i*}^*$

Wilson term construction

Usual Wilson term:

$$egin{aligned} &W = \sum_{\mu} \left(C_{\mu} + 1
ight) \ &C_{\mu} := rac{1}{2} \left(V_{\mu} + V_{\mu}^{\dagger}
ight) & \left(V_{\mu}
ight)_{xy} := U_{\mu}(x) \delta_{x + \hat{\mu}, y} \ &W^{\dagger} = W \checkmark & \left[W, \gamma_5
ight] = 0 \checkmark \end{aligned}$$

Christian Hoelbling (Wuppertal)

Single flavor staggered fermions

Outlook

Staggered Wilson term construction

Staggered Wilson term: (Adams, 2010)

 $\boldsymbol{A} = \epsilon \eta_5 \left(\boldsymbol{C}_1 \boldsymbol{C}_2 \boldsymbol{C}_3 \boldsymbol{C}_4 \right)_{\text{sym}}$

•
$$\eta_5 = \eta_1 \eta_2 \eta_3 \eta_4 = (-1)^{x_1 + x_3}$$

• $\eta_\mu = (-1)^{\sum_{\nu < \mu} x_{\nu}} \sim (\gamma_\mu \otimes 1)$
• $\epsilon = (-1)^{x_1 + x_2 + x_3 + x_4} \sim (\gamma_5 \otimes \xi_5)$
• $\{C_\mu, \epsilon\} = 0$
• $A \sim (1 \otimes \xi_5) + O(a)$

Remnant flavor degeneracy

- Staggered flavor basis: $A \sim \xi_5 = diag(1, 1, -1, -1)$
- Twofold degeneracy left!
- Let us take

 $M_{\mu\nu} = i\epsilon_{\mu\nu}\eta_{\mu}\eta_{\nu} \left(C_{\mu}C_{\nu}\right)_{\text{sym}}$ $M_{\mu\nu}^{\dagger} = M_{\mu\nu} \checkmark \qquad [M_{\mu\nu}, \epsilon] = 0 \checkmark$

Outlook

Discrete staggered symmetries

Remnants of Poincare symmetry:

	D _{st}	Α	$M_{\mu u}$
shift (translation)	+	-	±
axis reversal	+	-	±
rotation	+	+	$M_{lphaeta}$

- Preserved by staggered operator
- Preserved up to a sign flip by A
- Rotation introduces new terms for $M_{\mu\nu}$
- ➤ Bad: new counterterms
 - ! Search for more symmetric construction

Symmetrized staggered Wilson

$$M_{s} = \frac{1}{\sqrt{3}} (s_{12} (s_{1} s_{2} M_{12} + s_{3} s_{4} M_{34}) \\ + s_{13} (s_{1} s_{3} M_{13} + s_{4} s_{2} M_{42}) \\ + s_{14} (s_{1} s_{4} M_{14} + s_{2} s_{3} M_{23}))$$

• Shift or axis reversal in $\rho: \mathbf{s}_{\rho} \to -\mathbf{s}_{\rho}$

	rotatio	sign flip		
(1,4)	(2,3)	(3,1)	(2,4)	$s_{12} ightarrow - s_{12}$
(1,2)	(3,4)	(4,1)	(3,2)	$m{s}_{13} ightarrow - m{s}_{13}$
(1,3)	(4,2)	(2,1)	(4,3)	$s_{14} ightarrow - s_{14}$

• $M_s \sim (1 \otimes \xi^{(s)}) + O(a)$ $\xi^{(s)} = \text{diag}(0, 0, 2, -2)$

New symmetries

• Symmetries of the action:

Leading (a^3) terms:

- Staggered symmetries:none
- 2-flavor symmetries:A
- 1-flavor symmetries: A and all M_S
 - X Loop corrections renormalize flavor structure
 - ✓ Flavor assignment is arbitrary → no problem?

Single flavor staggered operator

Single flavor staggered operator

- D_{st} • $D_{st} + 1 + A$ • $D_{st} + 2 + A + M_{\mu\nu}$ • $D_s = D_{st} + (2 + M_s)$
- $D_1 = 1 + \epsilon \operatorname{sign}(\epsilon(D_s 1))$

Single flavor staggered operator

- D_{st}
- *D*_{st} + 1 + *A*
- $D_{st} + 2 + A + M_{\mu\nu}$
- $D_{\rm s} = D_{\rm st} + (2 + M_{\rm s})$

• $D_1 = 1 + \epsilon \operatorname{sign}(\epsilon(D_s - 1))$

Symmetries

Free operators

Tests in 2D First look at QCD

Outlook

Single flavor staggered operator

- D_{st}
- *D*_{st} + 1 + *A*
- $D_{st} + 2 + A + M_{\mu\nu}$
- $D_{\rm s} = D_{\rm st} + (2 + M_{\rm s})$

• $D_1 = 1 + \epsilon \operatorname{sign}(\epsilon(D_s - 1))$

Symmetries

Free operators

Single flavor staggered operator

• D_{st}

- $D_{\rm st} + 1 + A$
- $D_{st} + 2 + A + M_{\mu\nu}$
- $D_{\rm s} = D_{\rm st} + (2 + M_{\rm s})$
- $D_1 = 1 + \epsilon \operatorname{sign}(\epsilon(D_s 1))$

Symmetries

Free operators

Tests in 2D First look at QCD

Outlook

Single flavor staggered operator

Only 2-fold degeneracy in 2D *M*₁₂ uniquely lifts this degeneracy

• D_{st} • $D_{st} + 1 + M_{12}$ Q = 0• $1 + \epsilon \operatorname{sign}(\epsilon(D_{st} + M_{12}))$

Only 2-fold degeneracy in 2D *M*₁₂ uniquely lifts this degeneracy

- D_{st} • $D_{st} + 1 + M_{12}$ Q = 0
- $1 + \epsilon \operatorname{sign}(\epsilon (D_{st} + M_{12}))$

• D_{st} • $D_{st} + 1 + M_{12}$ Q = 1• $1 + \epsilon \operatorname{sign}(\epsilon (D_{st} + M_{12}))$

- D_{st}
- $D_{st} + 1 + M_{12}$ Q = 1
- $1 + \epsilon \operatorname{sign}(\epsilon(D_{st} + M_{12}))$

Unsymmetrized operator 6⁴, $\beta = 5.6$

Unsymmetrized operator 6^4 , $\beta = 5.6$

rs Tests in 2D

First look at QCD Outlook

Unsymmetrized operator 6⁴, $\beta = 5.6$

rs Tests in 2D

First look at QCD Outlook

Unsymmetrized operator 6^4 , $\beta = 5.6$

Unsymmetrized operator 6^4 , $\beta = 5.6$

Outlook

Symmetrized operator 6^4 , $\beta = 5.6$

Symmetrized operator 6^4 , $\beta = 5.6$

Symmetrized operator 6^4 , $\beta = 5.6$

Symmetrized operator 6⁴, $\beta = 5.6$

Outlook

Symmetrized operator 6⁴, $\beta = 5.6$

Outlook

Spectrum 6⁴, $\beta = 5.6$, 7-APE smeared

Tests in 2D First look at QCD

Outlook

Spectrum 4⁴, $\beta = 5.6$, 7-APE smeared

Tests in 2D First

First look at QCD Outlook

Spectrum 4⁴, $\beta = 5.6$, 7-APE smeared

Tests in 2D First look at QCD Outlook

Spectrum 4⁴, $\beta = 5.6$, 7-APE smeared

Single flavor staggered operator is possible

Wilson fermions without remnants of spurious naive degeneracy exist

But is it useful?

- Better condition number
- ✓ Smaller matrix

- X Staggered spinor structure
 X 2-hop Wilson term
- Essential: Check renormalization, exceptionals, scaling

Similar construction: (De Forcrand, Kurkela, Panero) Flavored mass term for naive fermions: (Creutz, Kimura, Misumi)

Staggered Wilson

To do list:

- Find counterterm structure
- Construct mesons, baryons
- O(a) improvement
 - Clover "for free" due to 2-hop Wilson term? (some CPU, but no additional bandwidth)
- Optimize algorithms for the structure
- Check flavor breaking
- Study scaling
- Apply to real problem
 - Insensitive to flavor breaking
 - → Ground states, bulk properties, spectral quantities
 - Hadron/quark masses? Thermodynamics?

Staggered overlap

To do list:

- Find counterterm structure
- Check locality
- Check flavor breaking
- Study scaling
- Apply to real problem
 - Insensitive to flavor breaking
 - Chiral symmetry essential
 - Spectral quantities?

