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WE STUDY THE APPROACH TO EQUILIBRIUM IN AN
ISOLATED MACROSCOPIC QUANTUM SYSTEM

THE PROBLEM MAY BE RELEVANT TO

FOUNDATION OF STATISTICAL MECHANICS
PYNAMICS OF COLD TRAPPED ATOMS

ALTHOUGH THERE ARE MANY IMPORTANT WORKS,
WE HERE CONCENTRATE ON A CONCEPTUAL ISSUE ON
THE SELECTION OF INITIAL STATE

OUR APPROACH IS BASED ON A PEEP WORK BY

von Neumann (1929), AND A RELATED WORK BY
Goldstein, Lebowitz, Mastrodonanto, Tumulka,

Zanghi (2009) arxiv1003.5424
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EASIC MOTIVATION




THE APPROACH TO
EQUILIBRIUM

ISOLATEV OLASSIOAI. MACROSCOPIC SYSTEM
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THE APPROACH TO
EQUILIBRIUM

GENEKAI. BELIEF:
| IF A CLASSICAL DYNAMICAL SYSTEM IS |
| - SUFFICIENTLY “CHAOTIC”, IT WILL EVENTUALLY SPEND
' MOST OF THE TIME IN THE EQUILIBRIUM, PROVIVED |
- THAT IT STARTS FROM A TYPICAL INITIAL STATE
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THE APPROACH TO /
FQUILIBRIUM

Q: WHY PON'T WE SEE SUCH EXCEPTIONAL STATES?

A: BECAUSE THEY ARE RARE

Q: IN WHAT SENSE ARE THEY RARE?

A: THE MEASURE OF SUCH STATES IS ZERO

Q: WITH RESPECT TO WHICH MEASURE?

A: LEBESGUE MEASURE OR MICROCANONICAL MEASURE

Q: WHY LEBESUGE MEASURE?
ENDLESS “METAPHYSICAL" PEBATE




THE APPROACHTO |
FQUILIBRIUM

Q: WHAT HAPPENS IN QUANTUM SYSTEMS?

Q: IS IT POSSIBLE THAT THE UNCERTAINTY PRINCIPLE
WIPES OUT “EXCEPTIONAL INITIAL STATES™?

" THERE IS A POSSIBILITY THAT ANY INITIAL STATE
 (WITH SUITABLE ENERGY) IS ALLOWED

e ———————— ——— — = p— e

von Neumann 1929, Goldsfem et al 2009



SETTING AND
PRELIMINARIES




SETTING

A FINITE ISOLATED QUANTUM SYSTEM
+ HILBERT SPACE /7 HAMILTONIAN

A

Hwa :ana SUCHTHAT 1 #Eﬁ FOK 04#6

E  MACROSCOPIC ENERGY
AE SMALL (BUT MACROSCOPIC) ENERGY INTERVAL

He ENERGY SHELL
THE SUBSPACE SPANNED BY ALLv.




THE APPROACH TO
EQUILIBRIUM

BASIC PICTURE: MOST OF THE STATES IN # - AKE
SIMILAR FROM MACROSCOPIC POINT OF VIEW
THESE TYPICAL STATES REPRESENT EQUILIBRIUM STATE

ENERGY SHELL HE

TYPICAL
EXCEPTIONALE
TYPICAL »
ExcevrlouALJm — | EXCEPTIONAL

TYPICAL




THE APPROACH TO
EQUILIBRIUM

AN EXOEPTIONAL STATE WILL EVENTUALLY EVOI.VE INTO

A TYPICAL SATE
A TYPICAL STATE WILL REMAIN TYPICAL (FOR MOST OF

THE TIME)
HE®H®

THIS ROUGHLY EXPLAINS THE APPROACH TO EQUILIBRIUM




BASIC ASSUMPTION ABOUT
MACROSCOPIC OBSERVABLE

A MACROSCOPIC OBSERVABLE

THROUGHOUT THE PRESENTATION, )
| <(121 — <A>mc>)2>mc — small \'

| WHERE MICROCANONICAL AVERAGE IS
! o  Trpg[ee]
e TI‘HE [1]

WE CONCENTRATE ON A SINGLE QUANTITY A
THIS LIMITATION SIMPLIFIES THE CONSIPERATION



MICROCANONICAL
TYPICALITY

[ MOST o € 1z 18 ESSENTIALLY "EQUILIBRIUM” IN HE
SENSE THAT <gp\ ( < >mc>) |gp> = small

——  —  — e — e ———— e p——————— — — ———

MOKE PKECISELY
THERE EXIST SMALL £ >0 AND >0

Up THE UNIT SPHERE IN 7

THERE IS A SUBSET 7 c 24, WITH _Yolumeld _
Volume[Z/{E]

AND ONE HAS (@] (A — (A)ne)) |9) < cFOR ANY ¢ € U
VARIATION OF THE RESULTS BY Goldstein et al.




MICROCANONICAL
TYPICALITY

"MOSTo € Hz 1S ESSENTIALLY "EQUILIBRIUM” IN TH
SENSE THAT <gp\ ( < 1) e >) |gp> = small ,

e —————— e — e — e p———————

SKETCH OF THEPROOF. 5 — (A — ()2
D dc,, el =
o (]3]} = /Zl 1 Z 5 U 105}

pEHE, ||¢||=1
=S me = singll

SINCE (¢|5|w) >0, (»|5|e) ITSELF MUST BE SMALL
FOR MOST



MICROCANONICAL
TYPICALITY

[ MOST o € 1z 18 ESSENTIALLY EQILIBKIU “ IN TH
SENSE THAT <gp\ ( < >m >) |g0> = Small ,

e —————— e — e — o — ——

BUT THERE IS NO INFORMATION ABOUT TIME-EVOLUTION

£

THERMODYNAMIC NORMALITY




THERMODYNAMIC

NORMALITY
GENERAL CONSIDERATION




THERMODYNAMIC
NORMALITY

S— _ S— — e — e —

( DEFINITION:
| 4 1S THERMOPYNAMICALLY NORMAL IF

Jl
(Wl (A= (A)me))? [¢a) = small
FORANY o SUCHTHATE < E, < E+ AE

= ——————— ————— e ——— e p———ge— e —

EAOH ENERGY EIGENSTATE IS ° EQUILIBKIUM
(VERY STRONG ASSUMPTION)

“ENERGY EIGENSTATE THERMALIZATION”
BUT THERE CAN BE MANY » € Hg SUCH THAT

(o (A — (A)me))” ) 18 NOT SMALL




MAIN ,f
(BUT TRIVIAL) THOREM

THEOREM: -
| SUPPOSE THATA IS THERMOPYNAMICALLY NOKMAL
THEN FOR ANY INITIAL STATE ©(0) € Hp, W

| ONEHAS (9(t)] (A — (A)me))” lip(t)) = small
FOR SUFFICIENTLY LARGE AND TYPICAL ¢

\;~ ——

e —————— — ———— = = - e — — - —

WHERE o(£) = e~*#* (0)

IF ONE MEASURES A AT SUCH ¢, THEN THE OUTOOME 1S
VERY CLOSE THE EQUILIBRIUM VALUE (A),... WITH A
PROBABILITY CLOSE TO 1

»(0) CAN BE VERY FAR FROM EQUILIBRIUM!



[ ONEHAS (2(8)] (A — (A)me))? (1)) = smal
roz SUFFICIENTLY LARGE AND TYPICAL ¢

[S—

B ———————— - = = — e ——

MORE PRECISELY,
THERE ARE SMALL ¢ > 0,7 >0, LARGE T > 0

THERE IS A “GOOD” SUBSET G  [0,T] SUCH THAT

‘? >1—n AND

()| (A = {(A)me))” (1)) < & FgOKANY Ll



PROOF (EASY)

INITIAL STATE ©(0) = 3 ca ¥

84

TIME EVOLUTION ©(t) = > cae "Pely,

EXPECTATION VALVE
()] 8le(t)) = ) ¢ cg e PPl (] 3|yg)

. 5= (A~ (A)ue)’
LONG-TIME AVERAGE
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i T/o at (1) 510(®) = 3 leal? (ta] §]ta)

“ SO e

— small

. A
= /O dt (p(t)| § | (£)) = small
FOR SUFFICIENTLY LARGE T

THIS MEANS (VIA CHEBISHEV-TYPE ESTIMATE)
(p(t)] 3](t)) ITSELF IS SMALL FOR MOST ¢ € [0, 7]

§= (A~ (A)me)?



SO FAR WE HAVE SEEN THAT

IF 4 1S THERMOPYNAMICALLY NORMAL THEN FOR
ANY INITIAL STATE ©(0) € M THE RESULT OF A

MEASUREMENT OF A IS ESSENTIALLY EQUATL TO (A)mc
FOR SUFFICIENTLY LONG AND TYPICAL ¢

{HE APPROACH TO EQUILIBRIUM!

WE V0 NOT HAVE TO WORRY ABOUT THE “METAPHYSICAL’
PROBLEM OF THE SELECTION OF INITIAL STATES

BUT, THE THERMOPYNAMIC NORMALITY IS A VERY
STRONG CONPITION




NEXT ISSUE

IS THERMOPYNAMIC NORMALITY SATISFIED IN
REALISTIC QUANTUM SYSTEMS?

NOBODY KNOWS THE ANSWER

POSITIVE RESULTS
TYPICALITY
SIMPLE (AND ARTIFICIAL) EXAMPLES



THERMODYNAMIC

NORMALITY
TYPICALITY AND EXAMPLES




TYPICALITY

A VARIATION OF THE RESULTS BY
von Neumann 1929 Goldstein et al. 2009

FIX 7 AND A SUCH THAT ((A — (A)mc))®) = small

111C

_ eyl ]
b
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+ ( THEOREM:

| CHOOSE THE HAMILTONIAN & RANDPOMLY.
' THEN WITH PROBABILITY CLOSETO 1, A IS
' TRERMOPYNAMICALLY NORMAL

e —— e —— e ———————— — — B —



TYPICALITY

(THEOREM:
| CHOOSE THE HAMILTONIAN 7 RANPOMLY. '~
| THEN WITH PROBABILITY CLOSE TO 1, A 1S z}
' THERMOPYNAMICALLY NORMAL :

— o p— S —— ————— — P

MOKE PRECISELY,
THERE EXIST SMALL £ >0 AND > 0

CHOOSE AN ORTHONORMAL BASIS{va } OF H - RANPOMLY
THEN WITH PROBABILITY LARGER THAN 1 — 7, ONE HAS
(ol (A= (A)me))” |¥a) < & FOR ANY a



MEANING OF TYPICALITY

THEOKEM

CHOOSE THE HAMILTONIAN 7 RANPOMLY.
| THEN WITH PROBABILITY CLOSE TO LAIS
' TRERMODYNAMICALLY NORMAL

WE PO NOT MEAN THAT THE HAMILTONIAN 1S
LITERALLY CHOSEN RANPOMLY

TYPICALITY GUARANTEES THAT THERE ARE A LOT OF
HAMILTONIANS WITH WHICH A IS T.0. NORMAL

IT MAY NOT BE TOO STUPIP TO THINK ABOUT
THERMOPYNAMIC NORMALITY




EXAMPLE 1774 é‘f;@é '
INPEPENDENT SPINS "%

INVEPENVENTS — 1/2SPINS UNPER RANPOM
MAGNETICFIELD .
Z iS55 RANDOMA; € [—h, b

ENERGY EIGENSTATES ANV EIGENVALUES

h;
®w E, —Z—ag NON-DEGENERATE
i=1 =1 " WITH PROBABILITY ONE

WHERE S*f) w;ﬂ 2 :% w;:l

0'2(0'1,0'2 ..... O‘N) O'jZ::l




EXAMPLE 1
INPEPENDENT SPINS

THE MOPEL IS TRIVIAL, BUT CHOOSE A — Z s<w>

SINC A
WSO ) =0 (] (5 vE) - i

WE HAVE A £
(Vo | Alte) =0 (Vo| A% |Ye) = v <1 FORANY o

A

A IS THEKMOVVNAMICALLY NOKMAL FOK ANY E, AE |

e e e ————

ONE CAN EVEN START FROM THE STATE WITH ALL SPINS
POINTING THE x-PIRECTION, WHERE (2(0)| A|(0)) = 1/2

BUT STILL HAVE A < 1 AFTER A LONG TIME




———

EXAMPLE 1
INVEPENVENT SPINS

THE OPERATOR A = Z S5 EXHIBITS THE "APPROACH
10 EQUILIBRIUM”  * 3=

BUT THIS IS A TRIVIAL CONSEQUENCE OF THE INPEPENPENT
SPIN PRECESSION AROUND THE z-AXIS

THE STORY IS TOTALLY DIFFERENT IF WE CHOSSE

1 < a2)
:NZSJ'
j=1



———

EXAMPLE 2
THERMAL CONTACT

A TOY MOPEL FOR TWO MACROSCOPIC BOPIES IN

THERMAL CONTACT
H = H, + Hy + Hipny
H¢=E"¢ Hyxe = ES xi
PENSITY OF STATES 01 (E), p2(E)

AS ALWAYS, WE ASSUME p.(E) = exp[V o, (E/V)]
WITH INCREASING ENTROPY DENSITIES 0. (¢)

AND LARGE VOLUME V i



EXAMPLE 2
THERMAL CONTACT

A TOY MOPEL FOR TWO MACROSCOPIC BOVIES IN

THERMAL CONTACT
H = H, + Hy + Hiy
Hi&=EY¢ Hyxe=ED xi
DENSITY OF STATES p1(E), p2(E)

AS ALWAYS, WE ASSUME p.(E) = exp[V o, (E/V)]
WITH INCREASING ENTROPY DENSITIES 0. (¢)

AND LARGE VOLUME V i



INTERACTION HAMILTONIAN (WHICH IS ARTIFICIAL)

(&5 ® xx Hing & @ Xrr) = {

5 if (j, k) < (7', k')

0 otherwise

AFE > § > (level spacing)

I5heg

PRAW A SINGLY-
CONNECTED LINE ROUGHLY
ALONG‘EJ(-D - E,?) — const

(4,%) < (§', k') MEANS
THAT THEY ARE CONNECTED

A

. B




INTERACTION HAMILTONIAN (WHICH IS ARTIFICIAL)

(&5 ® xx Hing & @ Xrr) = {

5 if (j, k) < (7', k')

0 otherwise

AFE > § > (level spacing)

I5heg

PRAW A SINGLY-
CONNECTED LINE ROUGHLY
ALONG‘EJ(-D - El(f) — const

(4, k) < (5", k") MEANS
THAT THEY ARE CONNECTED

A

. B




EXAMPLE 2
THERMAL CONTACT

ENERGY EIGENSTATE £ ¢, = Eq e Yo=Y ik ® Xi
1,k

ONE CAN PROVE THATc, , ARE NEARLY EQUAL WHEN

BV + B — E,| < 0, AND SMALL OTHERWISE

(2)
"DEMOCRACY” IN ENERGY *
EIGENSTATES




EXAMPLE 2
THERMAL CONTACT

ENERGY EIGENSTATE £ ¢, = Eq e Yo=Y ik ® Xi
1,k

ONE CAN PROVE THATc, , ARE NEARLY EQUAL WHEN

BV + B — E,| < 0, AND SMALL OTHERWISE

(2)
"DEMOCRACY” IN ENERGY *
EIGENSTATES

ALMOST LIKE
MICROCANONICAL ENSEMBLE




EXAMPLE 2
THERMAL CONTACT

e

rms IMPLIES THAT A — 77, IS THERMOPYNAMICALLY |
 NORMAL IN THE SENSE THAT \

) ~ B (] (Hy — B2 i) = small |
FOR ANYOz SUCHTHATE <E, < E + AL

e —pe—— e — _——

£ |8 THE SOLUTION OF

d;:?l log p1(£1) = dgl log p2(E — E1) e
PERATVE bA



EXAMPLE 2
THERMAL CONTACT

ONE CAN EVEN START FROM THE STATE WHERE THE TWO
SYSTEMS HAVE PRASTICALLY DIFFERENT TEMPERATURES

BUT ONE HAS 77, ~ £°¢ AFTER A LONG TIME

WE HAVE THUS RIGOROQUSLY PERIVED
THE EQUILIBRATION OF TWO
MACROSCOPIC QUANTUM BOPIES IN
THERMAL CONTACT




EXAMPLE 2
THERMAL CONTACT

ONE CAN EVEN START FROM THE STATE WHERE THE TWO
SYSTEMS HAVE PRASTICALLY DIFFERENT TEMPERATURES

BUT ONE HAS 77, ~ £°¢ AFTER A LONG TIME

WE HAVE THUS RIGOROUSLY PERIVED
THE EQUILIBRATION OF TWO
MACROSCOPIC QUANTUM BOPIES IN
THERMAL CONTACT




EXAMPLE 2
THERMAL CONTACT

ONE CAN EVEN START FROM THE STATE WHERE THE TWO
SYSTEMS HAVE PRASTICALLY DIFFERENT TEMPERATURES

BUT ONE HAS 77, ~ £°¢ AFTER A LONG TIME

WE HAVE THUS RIGOROUSLY PERIVED v \
THE EQUILIBRATION OF TWO
MACROSCOPIC QUANTUM BOPIES IN
THERMAL CONTACT

SO FAR FOR A TOY MOPEL.... ( R J




SUMMARY
AND
FUTURE ISSUES




SMALLER ISSUES

CAN WE CONSTRUCT FUKTHEK EXAMPLES? ESPECIALLY
LESS ARTIFICIAL MOPDELS OF THERMAL CONTACT

IS IT POSSIBLE TO SHOW THERMOPYNAMIC NORMALITY
IN AN EXACTLY SOLVABLE MODEL?
FREE FERMION IS PONE, BUT HOW ABOUT “PIFFICULT” ONES?

CAN WE FORMULATE USEFUL SUFFICIENT CONPITIONS FOR
THERMOPYNAMIC NORMALITY? (BASICALLY, PECAY OF
CORRELATION WILL pO)



SMALLER ISSUES

CAN WE CONSTRUCT FUKTHEK EXAMPLES? ESPECIALLY
LESS ARTIFICIAL MOPDELS OF THERMAL CONTACT

IS IT POSSIBLE TO SHOW THERMOPYNAMIC NORMALITY
IN AN EXACTLY SOLVABLE MODEL?

FREE FERMION IS PONE, BUT HOW ABOUT ”VIFFICUVLT” %NES’.’
equchi

CAN WE FORMULATE USEFUL SUFFICIENT CONPITIONS FOR
THERMOPYNAMIC NORMALITY? (BASICALLY, PECAY OF
CORRELATION WILL pO)




PIGGER ISSUES

CAN ONE ESTIMATE RELAXATION TIME??

IS TRHERMODYNAMIC NORMALITY VALID IN REALISTIC
SYSTEMS?77

IF NOT, WE HAVE TO LIVE WITH RESULTS WHICH HOLD
FOR MOST (NOT ANY) INITIAL STATES

IS IT REASONABLE T0 STUPY COMPLETELY ISOLATED
SYSTEMS?7777
NOTHING (WE CAN OBSERVE) IS ISOLATED!!
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PIGGER ISSUES

CAN ONE ESTIMATE RELAXATION TIME?? |

IS THERMOPYNAMIC NORMALITY VALID IN REALISTIC
SYSTEMS?77

IF NOT, WE HAVE TO LIVE WITH RESULTS WHICH HOLD
FOR MOST (NOT ANY) INITIAL STATES 40,0021 1koda

IS IT REASONABLE T0 STUPY COMPLETELY ISOLATED
SYSTEMS?7777
NOTHING (WE CAN OBSERVE) IS ISOLATED!!



