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General Relativity, its mathematical techniques and conceptual frame-

work are by now part of the tool kit of (almost) all theoretical physi-

cists and at least some pure mathematicians. They have become part

of the natural language of physics.

Indeed parts of the subject are passing into Mathematics departments.

It is natural therefore to ask to what extent can they illuminate other

(non-relativistic) areas of physics.

It is also the case that the relentless onward progress of technology

makes possible analogue experiments illustrating basic ideas in General

Relativity.

In this talk I will illustrate this ongoing proces of Unification



As a topical example of the relentless progress of technology last

month ∗ saw the demonstration in the laboratory some 40 years after

the original prediction ! † of a very basic mechanism in semi-classical

General Relativity: amplification of vacuum fluctuations in a time-

dependent environment.

This is the basis of all we believe about inflationary perturtbations,

Hawking evaporation, Black Hole information “Pardadox?” and much

of AdS/CFT etc etc.

∗Wilson et al. Observation of the Dynamical Casimir effect,Nature479 (2011)
376-379

†G. T Moore, Quantum Theory of Eletromagnetic Fields in Variable Length One-
Dimensional Cavity. J. Math Phys11 (1970) 2379-2691, S.A. Fulling Radiationa
from a moving mirror in two dimensional spacetime : Conformal Anomaly, Proc
Roy Soc A348 (1976) 393-414



The idea of finding analogue models for General Relativistic effect is

not new, but the pace has hotted up recently.

Some important early work was done on cosmic strings modelled by

vortices in superfluid Helium 4 and by Volovik ∗, who noted that the

order parameter of some phases of superfluid Helium 3 is a triad ei

such that ei · ej = δij.

More recently, the empahisis has shifted to the optics of metamaterials

and most recently to graphene .

There are also interesting analogies in liquid crystals.

∗G. Volovk, The Universe in a Helium Droplet Oxford University Press (2003)



Let’s start with a very simple and sadly topical∗ example: Shallow
Water Waves If η = η(t, x, y) is the height of the water above its level
when no waves are present and h = h(x, y) the depth of the water,
then shallow water waves satisfy the non-dispersive wave equation: †

(ghηx)x + (ghηy)y = ηtt ,

where g is the acceleration due to gravity. From now on we adopt
units in which g = 1 The wave operator coincides with the covariant
D’ Alembertian

1√−g
∂µ(

√
−ggµν∂νη) = 0 ,

with respect to the 2 + 1 dimensional spacetime metric

ds2 = −h2dt2 + h(dx2 + dy2) .
∗Tsunami
†Einstein Equivalence Principle



Applying Ray theory and Geometrical Optics one writes

η = Ae−iω(t−W(x,y)) ,

where A(x, y) is slowly varying. To lowest order W satisfies the

Hamilton-Jacobi equation

(
∂W

∂x
)2 + (

∂W

∂y
)2 =

1

h
,

and the rays are solutions of

dx

dt
= h

∂W

∂x
.



Given any static spacetime metric

ds2 = −V 2dt2 + gijdx
idxj ,

the projection xi = xi(t) of light rays, that is characteristic curves of

the covariant wave equation or the Maxwell or the Dirac equations,

onto the spatial sections are geodesics of the Fermat or optical metric

given by

ds20 =
gij

V 2
dxidxj

In the special case of shallow water waves, the rays are easily seen to

be geodesics of the metric

ds2o =
dx2 + dy2

h
.



For a linearly shelving beach

h ∝ y y > 0 .

the rays are cycloids, and all ray’s strike the shore, i.e. y = 0, orthog-

onally. For a quadratically shelving beach,

h ∝ y2 y > 0 ,

the rays are circles centred on the shore at y = 0 , and again every

ray intersects the shore at right angles.



In fact the optical metric in this case is

ds2 =
dx2 + dy2

y2

which is Poincaré ’s metric of constant curvature on the upper half

plane. If x is periodically identified, one obtains the the metric in-

duced on a tractrix of revolution in E3 ,sometimes called the Beltrami

Trumpet ( i.e. H2/βZ . Note that the embedding can never reach

the conformal boundary at y = 0.



The optical time for rays to reach the shore in the second example
above is infinite. This reminds one of the behaviour of event hori-
zons. In fact there is a rather precise correspondence. The Droste-
Schwarzchild metric in isotropic coordinates (setting G = 1 = c) is

ds2 = −
(1 − m

2r)
2

(1 + m
2r)

2
dt2 + (1 +

m

2r
)4(dx2 + dy2 + dz2) .

with r =
√

x2 + y2 + z2. The isotropic radial coordinate r is related
to the Schwarzschild radial coordinate R by

R = r(1 +
m

2r
)2 .

The Event Horizon is at R = 2m, r = m
2 If we restrict the Schwarzschild

metric to the equatorial plane z = 0 we obtain

ds2 = −
(1 − m

2r)
2

(1 + m
2r)

2
dt2 + (1 +

m

2r
)4(dx2 + dy2) .



The optical metric is

ds20 =
(1 + m

2r)
6

(1 − m
2r)

2
(dx2 + dy2) .

and

h =
(r − m

2 )2r4

(r+ m
2 )6

.

we get the analogue of a black hole : a circularly symmetric island

whose edge is at r = m
2 and away from which the beach shelves initially

in a quadratic fashion and ultimately levels out as r → ∞. Since

1

h

dh

dr
=

2

r − m
2

+
4

r
− 6

r+ m
2

> 0

the beach shelves monotonically.



To obtain a cosmic strings for which the optical metric is a flat cone

with deficit angle δ = 2πp
p+1 one needs a submerged mountain with

h ∝ (x2 + y2)
p

p+1 ,

As p = ∞, we get a parabola of revolution and the optical metric

approaches that of an infinitely long cylinder. If p = 1 the mountain

is conical, like a submerged volcano. In physical coordinates x, y the

rays are bent, but one may introduce coordinates in which it is flat:

ds2 = dr̃2 + r̃2dφ̃2 , 0 ≤ φ̃ ≤ 2π

p+ 1

In these coordinates the rays are straight lines.



One could multiply these examples to cover such things as cosmic

strings, moving water and vortices. To take into account the fact

that the earth is round we replace E2 by S2

dx2 + dy2 → dθ2 + sin2 θdφ2 (1)

which gives Einstein’s Static Universe in 2 + 1 dimensions.

To take into account that it is rotating, we replace the static, i.e.

time-reversal invariant metric by a stationary metric

dθ2 + sin2 θdφ2 → dθ2 + sin2 θ(dφ− Ωdt)2 (2)

All of this can be illustrated using a (possibly rotating) ripple tank.

Let’s pass from hydrodynamics to to Optics and Maxwell’s equations.



Maxwell’s source-free equations in a medium are

curlE = −∂B
∂t

, divB = 0 ,

curlH = +
∂D

∂t
, divD = 0 ,

or if ∗

F = −Eidt ∧ dxi +
1

2
ǫijkBidx

j ∧ dxk

G = Hidt ∧ dxi +
1

2
ǫijkDidx

j ∧ dxk

dF = 0 = dG

∗ǫijk = ±,0



In what follows it will be important to realise that these equations hold

in any coordinate system and they do not require the introduction of

a spacetime metric.

However to “close the system”, one must relate F to G by means of

a “constitutive equation”.



If the medium is assumed to be static, and linear then

Di = ǫijEj Bi = µijHj

where ǫ is the dielectric permittivity tensor and µij the magnetic per-

meability tensor. If they are assumed symmetric ǫij = ǫji µij = µji
then E = 1

2

(

EiDi +HiBi
)

may be regarded as the energy density and

S = E × H the energy current or Poynting Vector since Maxwell’s

equations imply

divS +
∂E
∂t

= 0 .



“In olden days a glimpse of stocking was thought of as something

shocking” and certainly µij and ǫij were assume positive definite

“but now” , with the advent of Nanotechnology and the construc-

tion of metamaterials “ anything goes” . As long ago as 1964,

V.G. Vestilago∗ pointed out that isotopic substances with with µij =

µδij , ǫij = ǫδij and or which

µ < 0 , ǫ < 0

give rise to left-handed light moving in a medium with a negative

refractive index

∗Sov. Phys. Usp.10 (1968) 509-514



In 2001 R.A. Shelby, D.R. Smith and S. Schutz ∗ produced this effect

for microwave frequencies.

In 2002 D.R. Smith, D. Schurig and J.B. Pendry † appeared to have

produced this effect in the laboratory.

∗Science 292 (2001) 77-79
†App Phys Lett 81 (2002) 2713-2715



Assuming a spacetime dependence proportional to an arbitrary func-

tion of k · x − ωt, with ω > 0 one finds

k × E = ωB , k × H = −ωD .

k × E = ωµH , k × H = −ωǫE

It is always the case that (E,H,S) form a right handed orthogonal

triad but if both µ and ǫ are negative then (E,H,k) give form a

left-handed orthogonal triad and so S and k are anti-parallel rather

than parallel as is usually the case. Since the wave vector k must

be continuous across a junction between a conventional medium and

and an exotic medium with µ < 0, ǫ < 0 , this give rise to backward

bending light.



The speed of propagation v = 1
n , where n is the refractive index is

given by

v2 =
ω2

k2
=

1

µǫ

with is natural to take the negative square root to get the refractive

index

n = − 1
√
µǫ
.



Given a spacetime metric gµν one has a natural way of specifying a
constitutive relation:

G = ⋆gF

where ⋆g denotes the Hodge dual with respect to the spacetime metric
g such that ⋆g⋆g = −1. If

ds2 = −V 2(xk)dt2 + gij(x
k)dxidxj

Tamm ∗, Skrotskii † and Plebanski ‡showed that

µij = ǫij =

√

det glm
V 2

gij ,

∗I. E. Tamm, Zh. Rus. Fiz.-Khim. Obshchestva, Otd. Fiz. 56 , 248 (1924)
†G.V. Skrotskii, Dokl. Akad. Nauk SSSR 114, 73 (1957) [Soviet Physics Doklady
2, 226 (1957)]

‡J. Plebanski, Phys. Rev. 118 , 1396 (1960)



A medium with µij = ǫij is said to be impedance matched. A sim-

ilar result holds for resistivity problems such as that of Calderon ∗

encountered oil prospecting

∇ · j = 0 , E = −∇ φ , ji = σijEj

∂iσij∂jφ⇒ ∇2
gφ = 0 =

1
√
g
φi

(√
ggij∂jφ

)

with

σij =
√
ggij , gij = (detσij)ρij

∗A.P. Calderon, On an Inverse boundary value problem, Seminar in Numerical Anal-
ysis and its Applications to Continuum Physics (Rio de Janeiro,1980 Soc Mat Rio
Janeiro (1980 65-73



If

σij =
1

z
δij

we get Poincaré metric on upper half space model of hyperbloic or

Lobachevsky space H2 .

ds2 =
dx2 + dy2 + dz2

z2

The conformal boundary is a perfect conductor.



In physics we may choose either the West Coast signature convention

−+ ++, so that gtt < 0 and gij is positive definite or the East Coast

convention + −−− for which gtt > 0 and gij is negative definite. By

Sylvester’s Law of Inertia the signature is locally constant, however

Running between the East Coast and the West coast there must be

a curve on which the spactime signature flips (as originally suggested

in a different context by Arthur Eddington in 1922). Clearly light

passing from Coast to Coast will get bent back.

By Fermat’s Principle electromagnetic waves move along geodesics

of the optical metric

ds20 = V −2gijdx
idxj

but this is invariant under signature change.



If time reversal symmetry is broken a Stationary metric may be cast

in three different forms ∗

ds2 = −U(dt+ ωidx
i)2 + γijdx

idxj

= U

{

− (dt− bidx
i)2 + aijdx

idxj
}

=
U

1 − hijW iW j

{

−dt2 + hij(dx−W idt)(dxj −W jdt)

}

Fermat’s Principle for light rays now generalises to Zermelo’s Problem

: minimize the travel time of a boat moving with fixed speed wrt a

Riemannian metric hij in the presence of a “wind” W i.

∗G.W. Gibbons, C. A. R. Herdeiro and M. C . Stationary Metrics and Opti-
cal Zermelo-Randers-Finsler Geometry. Phys.Rev.D79 :044022,2009. e-Print:
arXiv:0811.2877 [gr-qc]



One may also think of the problem as one of a particular type of

Finsler Geometry considered first by Randers with a Finsler function

of homogeneous degree one in velocity vi = dxi

dλ defining a line element

ds = Fdλ , given by

F =
√

aijv
ivj + biv

i .

Alternatively one may think of a charged particle of unit mass and

unit charge , moving on a Riemannian manifold with metric aij and

magnetic field Bij = ∂ibj − ∂ibj. In General Relativity, this is Gravito-

Magnetism verified recently by the GPB satellite experiment.



In the absence of time reversal symmetry there is a magneto-electric

effect first predicted by L. Landau and E. M. Lifshitz in 1956 and

exhibited for instance by Cr2O3 .

Bi = µijHj + αjiEj , Di = ǫijEj + αijHj

E =
1

2
µijHiHj + αEiHj +

1

2
ǫijEiEj

If we take as constitutive relation G = ⋆gF , then µij, ǫij and αij may

be read off form the spacetime metric.



In a moving medium, a typical sound or light wave satisfies

[

(∂t −W i∂i)
2 − hij∂i∂j

]

u = 0 .

The rays solve the Zermelo problem with wind W i. For sound waves

this is known to explain the curious (and irritating) propagation of

traffic noise. The rays behave like charged magnetic particles , the

magnetic field being given by the vertical gradient of the horizontal

wind. Of course a vertical gradient in temperature and hence refrac-

tive index will also provide an anti-mirage effect. This produces a

curve metric hij. Claude Warnick and I have recently modelled this

by a charged particle moving in a magnetic field on the upper half

plane. ∗

∗The Geometry of sound rays in a wind. Contemp.Phys. 52 :197-209,2011.:
arXiv:1102.2409 [gr-qc], Traffic Noise and the Hyperbolic Plane. Annals Phys.
325 :909-923,2010. arXiv:0911.1926 [gr-qc]



Designing Invisibility Cloaks, analogue black holes etc using Metama-

terials and Transformation Optics. The basic idea is to start with a

metric (it could be flat) and read off ǫij and µij . The metric could

even be flat and obtained by a local diffeomorphism from the flat

metric by which a beam or pencil of parallel straight lines in Cartesian

coordinates are taken to the desired set of light rays in an impedance

matched metamaterial medium. This technique has been much ex-

ploited by Pendry, Leonhardt and their collaborators and followers

recently.

As pointed ut by Uhlmann and others, similar problems arise in Calderon’s

inverse problem: given a measuremant of E and φ on the boundary

of some domain, can you determine uniquely the conductivity in the

interior or can a reservoir of oil be invisible to the prospector?



In general one needs anisotropic materials.

To obtain an isotropic metamaterial medium the local diffeos should

be conformal. The oldest and best known example of this is Maxwell’s

Fish Eye Lens which makes use use of Hipparchus’s stereographic pro-

jection. This is the basis of the Luneburg Lens ∗

∗R. K. Luneburg, Mathematical Theory of Optics. Providence, Rhode Island:
Brown University. (1944) pp. 189 - 213.



A variant due to Minano ∗ pulls back the round metric on S2, (θ, φ)

to R2(x, y) using

x =

(

1 − sin θ

cos θ

)
1
p
cos(

φ

p
) ,

(

1 − sin θ

cos θ

)
1
p
sin(

φ

p
)

to get

ds20 = dθ2 + cos2 dφ2 = n2(dx2 + dy2) , n = 2p2
rp−1

r2p + 1

∗Optical Express 14 (2006) 9627-9635



To get a black hole start with Droste-Schwarzschild in isotropic co-

ordinates

ds2 = −
(1 − M

2|x|)
2

(1 + M
2|x|)

2
dt2 + (1 +

M

2|x|
)4dx2 ,

n = µ = ǫ = (1 +
M

2|x|
)3(1 − M

2|x|
)−1 .



The original cloak construction by Uhlmann works like this. We con-

sider a spherical shell or solid annulus a < r < 2a in r, θ, φ space and

map it onto the punctured disc 0 < r̃ < 2a by

r̃ = 2(r − a) θ̃ = θ φ̃ = φ

The map is the identity: r = r̃ for r > 2a, r̃ > 2a. Now pull back the

flat metric dr̃2 + r̃2(dθ̃2 + sin2 θ̃dφ̃2) and straightlines in r̃, θ̃, φ̃ space

ds2 = 4dr2 + 4(r − a)2(dθ2 + sin2 θdφ2)

ǫ = µ = diag(2(r − a)2 sin θ,2 sin θ,
2

sin θ
)

No light ray (or electric current) enters the solid ball r < a.



The metric

ds2 = −(
r

R

)2p
dt2 +B2dr2 + r2

(

dθ2 + sin2 θdφ2
)

(with R and B constants) arises in Generla Relativity in a number of
contexts

• p = 0 and B =
√

1 − 8πGη2, gives the Barriola-Vilenkin Global
Monopole.

• p = 2γ
1+γ , B =

√
1+6γ+γ2

1+γ , gives Bisnovatyi-Kogan Zeldovich’s gas
sphere Here, γ is the constant ratio of pressure to density of. the
gas for which

P =
γ2

1 + 6γ + γ2
1

2πr2



Tippett has considered the case p = 1 − s B = s, is, for r < R to get

Tippett’s interior cloaking metric. For r > R, the exterior cloaking

metric has p = 0, and B = 1 and hence is flat. Note that Tippett

assumes that s > 1.

If p > 0, the origin r = 0 is an infinite redshift surface, while if p < 0

it is an infinite blueshift surface. The former is the case for the

Bisnovatyi-Kogan Zeldovich gas sphere, while, since s > 1, the latter

is the case for the cloaking metric. The optical metric is

ds2o = B2
(R

r

)2p
dr2 +R2

(R

r

)2p−2(

dθ2 + sin2 θdφ2
)

If ρ =
(

r
R

)1−p

ds2o = R2
{

(B′)2dρ2 + ρ2
(

dθ2 + sin2 θdφ2
)

}



with B′ = B
|1−p|. If p < 1, ρ increases as r increases, if p > 1, then ρ

decreases as r-increases. This is a a cone over a 2-sphere.



The equatorial section θ = π
2 has metric

R2
{

(B′)2dρ2 + ρ2dφ2
}

= (RB′)2
{

dρ2 + ρ2(d
φ

B′)
2
}

with φ ∈ (0,2π], φ
B′ ∈ (0, 2π

B′ ] and is is a flat cone with deficit angle

δ = ( 1
B′−1)2π = (

|1−p|
B −1)2π Remarkably case of the interior cloaking

metrics has

B = s , 1 − p = s , =⇒ B′ = 1 ,

Thus the equatorial optical metric is globally flat, both inside and

outside. The geodesics are therefore straight lines as are all meridional

sections φ = constant and therefore in each meridional plane we have

ρ cos θ = c .



For r > R we have therefore

r cos θ = Rc = b ,

where we identify the constant Rc with the impact parameter. For

r < R we have

( r

R

)s
cos θ =

b

R
, =⇒ r = R

( b

R cos θ

)
1
s .

The geodesics passing through the interior which would, as described

in (ρ, θ, φ) coordinates, be straight lines parallel to the axis of sym-

metry are, as described in (r, θ, φ) coordinates, are radially outwards

compared with straight lines, thus giving the impression of cloaking.

This accords with Figure 2 of ∗.
∗B. Tippett, arXiv:1108.3793



If p < 1, then ρ increases as r increases, while if p > 1, then ρ

decreases and r increases. Thus in general the interior metric will

be conical and as long as p < 1 and B′ > 1 One may then envisage

meridional or equatorial cross-sections of the the optical manifold as

an extended . flat plane ρ > 1 with a central conical central mountain

0 < ρ < 1. In (ρ, θ, φ) coordinates the geodesics are straight lines,

but, in contrast with the case considered by Tippett , they become

deflected as they pass over the mountain, since like travellers in a

mountainous landscape they avoid the summit. If one then maps

back to the “physical coordinates” (t, r, θ, φ) one obtains a cloaking

effect. All of this is very similar to the theory of lensing by cosmic

strings or the motion of electrons in graphene with pentagonal or

heptagonal defects.



Another possibly are Hyperbolic Metamaterials for which ǫij is an

indefinite matrix. The dispersion relation for a bi-refringent medium

with µij = δij is a quartic cone of two sheets:

(

k2x
n2
o

+
k2y

n2
o

+
k2z
n2
o
− ω2

c2

)(

k2x
n2
e

+
k2y

n2
e

+
k2z
n2
0

− ω2

c2

)

= 0 (3)

with n2
o = ǫz , n2

e = ǫx = ǫy . Exceptional electromagnetic waves in a

uniaxial thus obey obey

1

c2
∂2E

∂t2
=

1

ǫ1

∂2E

∂z2
+

1

ǫ2

(

∂2E

∂x2
+
∂2E

∂y2

)

(4)



The idea is ∗ that dipole-moments in some crystals such as α quartz

interact with lattice vibrations to form phonon-polariton modes called

restrahlen bands in the mid infra red region for which both ǫ1 and ǫ2
can both become negative. Moreover because of crystal anisotropy

ǫ1 and ǫ2 change sign at slightly different temperatures.

This would allow effective two-time physics .

∗I. I. Smolyaninov,Virtual Black Holes in Hyperbolic Metamaterials J Optics 13

(2011) 125101 [arXiv.org:1101.5625[physics.optics]] I. I. Smolyaninov, Opti-
cal models of the big bang and non-trivial spacetime metrics based on meta-
materials Phys Rev Lett 105 (2010) 067402 [arXiv:0908:2407[physics.optics]]
I. I. Smolyaninov, Metamaterial ”Multiverse”, J.Optics 13 (2011) :024004
[arXiv:1005.1002[physics.optics]] I. I. Smolyaninov and E. E. Narimanov Met-
ric Signature Transitions in Optical Metamaterials Phys Rev Letts 105 (2010)
067402[arXiv:1007.1130[physics.optics]]



In a model in a layered composite dielectric material

ǫ2 = nm + (1 − nm)ǫd , e1 =
ǫmǫd

(1 − nm)ǫm + nmǫd
(5)

where the subscripts d and m stands for dielectric and metal respec-

tively and ǫm is frequency dependent and can be negative. nm is the

volume fraction of metal. In a simple Drude model

ǫm = 1 −
ω2
p

ω2 + iωγ
(6)

with γ
ωp

is small. If nm << 1 we have

ǫ2 ≈ ǫd −
nmω2

p

ω2 + iωγ
, ǫ1 ≈ ǫd . (7)



Rather than consider artificial impedance matched or hyperbolic metame-

trials, we may consider realistic substances such as chiral nematics in

their helical phase ∗. Up to a divergence the Frank-Oseen Free energy

is

F =
1

2

∫

(|∇qn|2 − λ(n · n − 1) d3 x , .

∇q
inj = ∂jnj + qǫijknk

is an Euclidean metric preserving connection with torsion . The free

energy density would vanish if n were covariantly constant with respect

to ∇q, ∇q
inj = 0. But rather like an anti-ferromagnet it is frustrated

∗GWG and C. Warnick, arXiv:1106.2423, The helical phase of chiral nematic liquid
crystals as the Bianchi VII(0) group manifold, Phys Rev E in press



since .

(∇q
i∇

q
j −∇q

j∇
q
i )nk 6= 0 .



The substance may adopt a compromise configuration called the He-

lical Phase which satisfies the second order equations but not the first

order Bogomolnyi type equation

n = (cos(pz), sin(pz),0)



A nematic liquid crystal seen through cross polarisers. It appears dark

in places where the director is oriented along one of the polarizer axes.

The points where the dark ares converge are disclinations.



Chiral nematic in its helical phase or Grandjean texture seen through

cross polarisers. The director is parallel to the substrate plane and

the axis perpendicular to it. The white lines are disclinations.



Optics in a nematic liquid crystal is governed by Fermat’s principle

using the Joets-Ribotta metric

ds2o = n2
edx

2 + (n2
o − n2

e)(n · dx)2

where no is the refractive index of the ordinary ray and ne that of the

extra-ordinary ray.



Introduce 3 one-forms with Maurer-Cartan relations

λ1 = cos(pz)dx+ sin(pz)dy , dλ1 = λ3 ∧ λ2

λ2 = cos(pz)dx− sin(pz)dy , dλ2 = λ3 ∧ λ
λ3 = pdz , dλ3 = 0 .

we find the Joets-Ribotta metric is

ds20 = n2
o(λ

1)2 + n2
e(λ

2)2 +
n2
e

p2
(λ3)2 .

This is a left-invariant metric on Ẽ(2), the universal cover of the two-

dimensional Euclidean group E(2) whose Lie algebra e(2) is of Type

V II0 in Bianchi’s classification.



Thus the helical phase of chiral nematic crystals gives rise to a static

Bianchi V II0 cosmology :

ds2 = −dt2 + n2
o(λ

1)2 + n2
e(λ

2)2 +
n2
e

p2
(λ3)2 .

and one may, and we did, use all the standard tools of General Rel-

ativistic cosmology to describe its optical and electromagnetic prop-

erties, including solving Maxwell’s equations, applying the Floquet

Bloch theorem and the associated Mathieu Hill equation .



Gravitational Kinks

The Topology of a Lorenztian metric may be (partially) captured by a
direction field ni. Given a Riemannian metric gRij, and a unit direction

field ni such that gRijn
inj = 1 we may construct a Lorentzian metric

gLij via

gLij = gRij −
1

sin2α
ninj , g

ij
L = g

ij
R − 1

cos2 α
nini , ni = gRijn

j

Conversely given gLij and gRij we may reconstruct ni up to a sign. Fixing
the sign amounts to fixing a time orientation In what follows we wil
choose gRij to be the usual flat Euclidean metric.

ds2L = g
ij
L dx

idxj = dx2 − 1

cos2α
(n · dx)2



Given a closed surface enclosing a domain D,Finkelstein and Mis-

ner quantified the notion of tumbling light cones the light cone tips

over on Σ = ∂D by introducing a kink number which counts times

how many times the light cone tips over on Σ = ∂D. The outward

unit normal ν and gives a 2-dimensional cross section of the four-

dimensional bundle S(∂D = Σ) of unit 3-vectors over ∂D = Sigma.

In the orientable case, the director field gives another 2-dimensional

cross section of S(Σ). The kink number kink(Σ, gL) is number of

intersections of these two sections with attention paid to signs. In

the non-orientable case, one considers the bundle of directions. If the

Lorentzian metric is non-singular we have

χ(D) = kink(∂D, gL) .

For planar domains kink(∂D, gL) is the obvious winding number.



disclination line n = (cos(sφ), sin(sφ),0) , φ = arctan(
y

x
)

s ∈ Z∪ ∈ Z+ 1
2. If s is half integral, then then we just have a direction

field, not a vector field.

n · dx = cos((s− 1)φ)dr+ sin((s− 1)φ)rdφ ,

α =
π

2
,⇒ ds2L = gLijdx

idxj = − cos(2(s− 1)φ)
(

dr2 − r2dφ2)
)

− 2 sin(2(s− 1)φ)

Moving around a circle r = constant, the radial coordinate is timelike

and the angular coordinate spacelike or vice versa depending upon

the sign of cos(2(s − 1)φ) (tumbling light cones). det gLij = −r2 and

the components gLij finite ⇒ metric non-singular if r > 0



Bloch Walls If parity symmetry holds then a typical free energy func-
tional takes the form

F [M] =
1

2

∫

dx
(

αij∂i · M∂jM + βijMiMj

In the unixial case with the easy direction along the third direction:
αij = diag(α1, α1, α2), βij = diag(β, β,0). For a domain wall separating
a region x << −1 and with M pointing along the positive 3rd direction,
from the rigion x >> +1 where it points along the negative 3rd
direction

M = M(0, sin θ(x), cos cos θ(x)) , M = constant

and finds that θ must satisfy the quadrantal pendulum equation, l =
√

α1
β

θ2 − 1

l2
sin2 θ = constant′ ,



If we impose the boundary condition that θ → 0 as x→ −∞ and θ → π

as x→ +∞, then constant′ = 0 and

cos θ = − tanh(
x

l
)

The Lorenzian metric (if α = π
2) is

ds2 = gLijdx
idxjdx2 + cos(2θ)

(

dy2 − dz2
)

− 2 sin 2θdzdy , .

This closely resembles our previous examples and clearly exhibits the

phenonemen of tumbling light cones. We note,en passant that in

principle the tensor αij could itself vary with position. If so, we might

interpret it in terms of an effective metric gj with inverse gij and

g = det gij obeying

αij =
√
ggij . (8)



Example: Liquid Crystal Droplets

The normal νi = ∂iS to the surface S = constant of a droplet of

anisotropic nematic phase inside a domain D with unit outward nor-

mal ν surounded by an isotropic phase satisfies the constant angle

condition

n · ν = cosα = constant .

That is ν · ν − 1

cos2α
(ν · n)(ν · n) = 0 = g

ij
L νiνj = g

ij
L∂iS∂jS

The surface ∂D of the droplet ∂D is a null-hypersurface or wave

surface (a solution of the zero rest mass Hamilton-Jacobi equation)



Taking the z-coordinate as time so time runs vertically upwards and

making the ansatz

S =
z

sinα
+W (x, y) , ∇W · ∇W = 1 .

Simple solutions of this Eikonal equation are given by Sandpiles with

π
2−α the angle of repose







These describe Bitter Domains in a ferromagnetic film with n = M
|M|

with normal ν and boundary condition M · ν = 0.

∇ · M = 0 , |M| = constant

∇ · n ⇒ nx = ∂yψ , ny = −∂xψ |∇ψ| = 1 .



The axisymmetric solution is the spiral wave surface swept out by the

involute of a circle, a helical developable.

S = ± z

sinα
+ ±a

(

√

r2

a2
− 1 − arctan

(

√

r2

a2
− 1

)

)

± aφ



For the helical phase we make the ansatz

S = F(z) + x cos θ+ y sin θ

F(z) solves the quadrantal pendulum equation

cos2(θ − pz) − cos2 α = (cosα
dF

dz
)2 ⇒ F =

1

cosα

∫

dz
√

cos2(θ − pz) − cos2 α

The surface is ruled by horizontal straight lines making a constant

angle θ with the x-axis and is bounded by |pz− (θ+nπ)| < α, n ∈ Z In

other words it is horizontal cylinder or tube. The angle of the director

n makes with the fixed direction (cos θ, sin θ,0) cannot be less than α.



The hexagonal Graphene “lattice” in x has a hexagonal Brillouin zone

in the dual p-space and is is the sum of two trangular (true) lattices,

A and B in x space. Each lattice has a Fermi surface in p space

and these two Fermi surfaces, governing the conduction and valence

bands, touch in two conical Dirac points inside a Brillouin zone. Thus

the dispersion relation for small p is

E = ±|p|

Low energy excitations are governed by

EΨ = σ · pΨ

where the two-component Ψ has two pseudo-spin states.



But this is the massless Dirac equation! ∗ On a curved graphene

sheet it bcomes the Dirac equation on a curved surface Σ ⊂ E3 in

Euclidean 3-space with metric

ds2 = −dt2 + hijdx
idxj , i, j = 1,2

where hij is the induced metric.

Since the massless Dirac equation is conformally invariant we may

think of this metric on R×Σ as the optical metric of a static metric

with gtt 6= constant.

∗cf Semenov Phys Rev Lett,(1984)



Various examples have arisen in the literature If Σ = S2 we have an

approximation for Fullerenes.

If Σ is a Beltrami trumpet with metric of constant negative curvature,

we have the near horizon geometry of a 2-dimensional black hole.

Unfortunately we cannot find an isometric embeding of H2/Z into E3

all the way down to y = 0, the horizon ∗ We may also obtain the

optical geometry of the BTZ black hole away from the horizon †

If we dope the graphene in an analogue of a p-n junction we can also

obtain negative refractive indices.

∗arXiv A. Iorio and G. Lambiase The Hawking-Unruh phenomenon on graphene,
1108.2340cond.mat matrl-sci]]

†GWG and Mirjam Cvetic: to appear



Conclusion and Propects

• In this talk I have described on some areas of non-gravitational

physics where analogues of basic ideas in general relativity come into

play. They include

• Dynamic Casimir Effect

• Water and sound waves

• Cloaking and other devices using metamaterials

• Nematic liquid crystals



• Graphene

Other areas not covered include

• Bose-Einstein Condensate

• Dirac Metals

• Smectcs and blue phases in liquid crystals


