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SCIENCE & ENVIRONMENT
27 August 2011 Last updated at 02:41 ET

LHC results put supersymmetry theory 'on the
spot'

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of
an enticing theory of sub-atomic physics.

Researchers failed to find evidence of so-called "supersymmetric" particles, which many
physicists had hoped would plug holes in the current theory.

Theorists working in the field have told BBC News that they may have to come up with a
completely new idea.

Data were presented at the Lepton Photon science meeting in Mumbai.

They come from the LHC Beauty (LHCb) experiment, one of the four main detectors situated
around the collider ring at the European Organisation for Nuclear Research (Cern) on the
Swiss-French border.

By Pallab Ghosh
Science correspondent, BBC News
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top quark AFB

Forward Backward Asymmetry 

34 

But  

CDF: 
NLO Theory: 

QCD predicts that top quark production is  
  forward backward symmetric at LO 
At higher orders a positive asymmetry appears 
This asymmetry is sensitive to new physics  
The new result from CDF earlier this year  
 showed a larger deviation (PRD 83 112003 (2011)) 
Recently new results form D0    

.. see F. Petriello 
High Mass Dependence? 

37 

No clear mass dependence in the D0  
data, as compared to the CDF data  

Interesting phenomenon! New physics? Theory issues?  
Full data set analysis (~10 fb-1) will be useful to shed more light  

3.4σ 
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Like Sign Top Production at the LHC 
Is the Tevatron observation due to flavor changing neutral currents? 
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background event predicted 
-> Exclusion limits! 
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Do we still expect 
anything at the LHC?

Hitoshi Murayama (IPMU & Berkeley)
YIPQS Symposium @ YITP, Kyoto, Feb 6, 2012
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• Complete the Standard Model

• dream since 60’s, finally there

• need to clear the Terascale fog
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Where we are going

• Complete the Standard Model

• dream since 60’s, finally there

• need to clear the Terascale fog

• Find physics beyond the standard model

• naturalness, unification

• dark matter, baryogenesis
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• Fermi formulated the 
first theory of the weak 
force (1932)

• The required energy scale 
to study the problem 
known since then: ~TeV

• We are finally getting 
there!

Terascale
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• ∼1970 reached strong scale 10–13cm≈Me–2π/αs b0

• ∼2010 reached weak scale 10–17cm=TeV–1

• known since Fermi (1933), finally there!
• fundamental scale?
• extra dimensions?  TeV string theory?
• a derived scale?
• from SUSY breaking? technicolor?
• we expect rich spectrum of new particles!
• We’ll start with Higgs boson(s)
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Five empirical evidences
for physics beyond SM
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Why the Terascale?
––weak interaction––
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Mystery of
the weak force

• Gravity pulls two massive 
bodies (long-ranged)

• Electric force repels two 
like charges (long-ranged)

• Weak force pulls protons 
and electrons (short-
ranged) acts only over 
0.000000001 nanometer   

• We know the energy scale:  
~0.3 TeV using ℏ and c

15
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We are swimming 
in a quantum liquid

• There is quantum liquid 
filling our Universe
• It doesn’t disturb gravity 

or electric force
• It does disturb weak 

force and make it short-
ranged
• It slows down all 

elementary particles 
from speed of light
• otherwise no atoms!
• What is it??

E&M

gravity

e

t

eL
eLeR

eR

tL
tR tL

tR

n

weak

nLnL nL
1/M
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Cosmic 
Superconductor

• In a superconductor, magnetic field gets repelled (Meißner 
effect), and penetrates only over the “penetration length”

	

 ⇒ Magnetic field is short-ranged!

• Imagine a physicist living in a superconductor

• She finally figured:

• magnetic field must be long-ranged 

• there must be a mysterious charge-two condensate in her 
“Universe”

• But doesn’t know what the condensate is, nor why it 
condenses

• Didn’t have enough energy (gap) to break up Cooper pairs

 That’s the stage where we are!

17
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Higgs boson mass
in the Standard Model

18

V = �µ2H†H +
�

2
(H†H)2 =

�

2
(H†H � v2)2 + c.c.

v ⇡ 175GeV, mh / �v
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Some of the SM 
backgrounds

19

σpp~2×1011 pb
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Dec 13, 2011 @ CERN
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• truly impressive progress

• 115.5<mh<127 or >600

• If mh>130, MSSM dead!

• If mh>466, need BSM!

• Anyway, a lot to look 
forward to!

21
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observed?
LEP ATLAS+CMS 

Combination 

ATLAS 
today 

ATLAS exclusion
112.7 < mH < 115.5 GeV 
131 <mH < 453 GeV
except 237-251 GeV
excess 2.4 σ local, ~ 2.3 σ with LEE

CMS exclusion
127GeV-600GeV
maximum local significance 2.6σ
1.9σ global after correcting for 
the LEE in the low mass region
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CERN official statement
Taken individually, none of these excesses is any 
more statistically significant than rolling a die 
and coming up with two sixes in a row. What is 
interesting is that there are multiple independent 
measurements pointing to the region of 124 to 
126 GeV. It's far too early to say whether ATLAS 
and CMS have discovered the Higgs boson, but 
these updated results are generating a lot of 
interest in the particle physics community.

23
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#  didn’t stop theorists from speculating!
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What do we learn from 
the Higgs boson mass?
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Higgs allows a look into 
higher energies

• Higgs self-coupling can
• grow if big #  Landau pole, composite?
• go negative if small #  instability
• If mH>600 GeV, it grows very quickly, 

basically with a few TeV cutoff
• need new physics < a few TeV because of 

the inconsistency with low-energy data
• most focused on the light window

25

d

dt
� ⇠ +�2 + g2�� h4

t

v ⇡ 175GeV, mh / �v
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a few points

• The experimentally suggested Higgs boson 
mass is consistent with weak-coupled 
theory up to very high energies

• grand unification

• supersymmetry

• if on low end, need new physics below 
108GeV to prevent us from decaying

27

Monday, 6 February 12



Why the Terascale?
––dark matter––
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“Seeing”
invisible dark matter
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“Seeing”
invisible dark matter
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22% of
the Universe
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Search for MACHOs
(Massive Compact Halo Objects)

Large Magellanic Cloud

Dim Stars?
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• Clumps to form structure

• imagine 

• “Bohr radius”: 

• too small m ⇒ won’t “fit” in a galaxy!

• m >10−22 eV “uncertainty principle” bound 
(modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

V = GN
Mm

r
rB =

�2

GNMm2

Mass Limits
“Uncertainty Principle”
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• 10-31 GeV to 1050 GeV 

Mass Limits
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• 10-31 GeV to 1050 GeV 

• we narrowed it down to 
within 81 orders of 
magnitude
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• 10-31 GeV to 1050 GeV 

• we narrowed it down to 
within 81 orders of 
magnitude

• a big progress in 70 years 
since Zwicky

Mass Limits
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• The dominant paradigm: 
WIMP (Weakly Interacting 
Massive Particle)
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WIMP (Weakly Interacting 
Massive Particle)
• Stable heavy particle 

produced in early 
Universe, left-over from 
near-complete annihilation
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• The dominant paradigm: 
WIMP (Weakly Interacting 
Massive Particle)
• Stable heavy particle 

produced in early 
Universe, left-over from 
near-complete annihilation

• messngers from other 
dimensions?  SUSY?
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Why the Terascale?
––naturalness––
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Post-Higgs Problem
• robust discovery reach by ATLAS/CMS

• We will see “what” is condensed

• But we still won’t know “why”

• Two problems:
Why anything is condensed at all
Why is the scale of condensation 
~TeV≪MPl=1015TeV

• Explanation most likely to be at ~TeV scale because 
this is the relevant energy scale

35
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Strange

• Higgs boson is the only spin 0 
particle in the standard model
• one of its kind
• but does the most important job
• looks rather artificial
• Higgsless theories: possible but not 

favored by EW precision data
• another problem: naturalness

36
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Once upon a time, there was a 
naturalness problem...

• At the end of 19th century: a “crisis” about electron

• Like charges repel: hard to keep electric charge in a 
small pack

• Electron is point-like

• At least smaller than 10–17cm
• Need a lot of energy to keep it small!

• Correction Δmec2 > mec2 for re < 10–13cm

• Breakdown of theory of electromagnetism
	

 ⇒ Can’t discuss physics below 10–13cm

Dmec2 ⇠ e2

re
⇠ GeV

10�17cm
re
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Anti-Matter Comes to Rescue
by Doubling of #Particles

• Electron creates a force 
to repel itself

• Vacuum bubble of 
matter anti-matter 
creation/annihilation

• Electron annihilates the 
positron in the bubble

⇒ only 10% of mass even 

for Planck-size re~10–33cm

e–

g

e–
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by Doubling of #Particles

• Electron creates a force 
to repel itself

• Vacuum bubble of 
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⇒ only 10% of mass even 

for Planck-size re~10–33cm
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a
4p
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History repeats itself?
• Higgs also repels itself

• Double #particles again   
⇒ superpartners

• “Vacuum bubbles” of 
superpartners cancel the 
energy required to contain 
Higgs boson in itself

• Standard Model made 
consistent with whatever 
physics at shorter 
distances

H H

H

H H

H
~

W
~

Dm2

H ⇠
a
4p

m2

SUSY log(mHrH)

39
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Opening the door
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Opening the door

• Once the naturalness problem 
solved, we can get started to 
discuss physics at shorter distances 
and earlier universe.

• It opens the door to the next level:

Hope to probe yet higher energies

40
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Three Directions
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Three Directions
Supersymmetry
• Higgs just one of many scalar bosons
• SUSY loops make mh

2 negative

43

Monday, 6 February 12



Three Directions
Supersymmetry
• Higgs just one of many scalar bosons
• SUSY loops make mh

2 negative

Higgsless/composite

• Higgs bound state of elementary fermions

• condenses because of strong attractive force
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Three Directions
Supersymmetry
• Higgs just one of many scalar bosons
• SUSY loops make mh

2 negative

Higgsless/composite

• Higgs bound state of elementary fermions

• condenses because of strong attractive force

Extra dimension

• Higgs spinning in extra dimensions

• new forces from particles running in extra D

43
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• We really don’t know 
what is going on at TeV

• stupid theorists!

• Can we zoom in onto 
a point on this map?

• Expect the unexpected
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SUSY naturalness limit
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SUSY naturalness limit
• Higgs mass squared 

driven negative by 
squark loop (Inoue et al)
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• natural origin of EWSB!
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SUSY naturalness limit
• Higgs mass squared 

driven negative by 
squark loop (Inoue et al)

• natural origin of EWSB!

• if stop too heavy, Higgs 
mass driven too negative

• mstop < 200 GeV?

• mgluino < 300 GeV?
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Oversimplified summary

H Bachacou

Henri Bachacou, Irfu CEA-Saclay Lepton-Photon 2011 49

My own over-simplified one-slide summary

Lower Limit (95% C.L.)

SUSY (mq = mg) 1 TeV

Gauge bosons (SSM) 2 TeV

Excited quark 3 TeV

~ ~

Unfortunately, no hint of New Physics in the LHC data (yet)

Lepton-Photon 2011
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Oversimplified summary

H Bachacou

Henri Bachacou, Irfu CEA-Saclay Lepton-Photon 2011 49

My own over-simplified one-slide summary

Lower Limit (95% C.L.)

SUSY (mq = mg) 1 TeV

Gauge bosons (SSM) 2 TeV

Excited quark 3 TeV

~ ~

Unfortunately, no hint of New Physics in the LHC data (yet)

in most cases, LHC limits just surpassed 
EW precision limits = LEP +Tevatron

Lepton-Photon 2011
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KK graviton
warped extra dim

47

2

FIG. 1: Experimental and theoretical constraints on the KK gravi-
ton parameters in the c − m1 plane. Red curves show experimental
constraints and blue curves show theoretical constraints. The green
shaded region shows the allowed parameter space.

parameters [9] (Figure 1) we expect c to lie roughly between
0.01 (weakly coupled) and 0.1 (strongly coupled). We con-
siderm1 in the range of 750 GeV - 2 TeV. The decay width of
the graviton to Standard Model particles can be evaluated by
using the expressions given in [10, 17, 18]. In the limit that
decay particle masses can be neglected the decay width of the
graviton is given by

Γn = αmn(xnc)2 (6)

where α is a constant depending upon the number of open
decay channels. If one assumes decay to only StandardModel
particles the ratio Γ1 : m1 is found to be 1.37% for c = 0.1
(Assuming a Higgs mass of 120 GeV and decay into Standard
Model particles only). This value is in disagreement with the
value 1.43% cited in the literature [19].

III. USING AZIMUTHAL ANGULAR DEPENDENCE TO
MEASURE SPIN

To determine the spin of a particleX , we consider the pro-
duction process A + B → X + Y whereX further decays to
M + N . Here, A and B refer to beam particles or partons,X
is the parent particle whose spin we wish to measure. M and
N are the daughter particles thatX decays into.
This gives us two planes to consider, namely the production

plane (defined by the beam direction and the parent momen-
tum) and the decay plane (defined by the parent momentum
and either daughter) (Figure 2).
Now consider the daughter M with momentum "pM . The

angle it makes with the parent momentum "pX is defined to
be θ. Projecting out the component of "pM parallel to "pX and
looking at the angle between the residual vector and the pro-
duction plane we define an angle φ. Thus, φ describes az-
imuthal rotations of the vector "pM in the x− y plane with "pX

FIG. 2: Production and decay planes of the process A+B → X +Y
→ M + N . The angle φ is defined as the azimuthal angle between
"pX and "pM or equivalently the angle between the production and
decay planes.

taken to be the z-axis. From the figure it is clear that, equiv-
alently φ can be defined as the angle between the production
plane and the decay plane. More explicitly, we define the two
vectors,

"pprod = "pA × "pX (7)

and,

"pdecay = "pX × "pM (8)

Then,

cosφ = p̂prod × p̂decay (9)

Here p̂ denotes the normalized vectors.
In the limit of the narrow width approximation, the ampli-

tude can be split intoMprod andMdecay.

Mprod = 〈X, Y |Tprod|A, B〉 (10)

Mdecay(φ) = 〈M, N, φ|Tdecay|X〉 (11)

where we have explicitly shown the φ dependence of the the
final state and decay amplitude. We also have,

Mdecay(φ) = 〈M, N(φ = 0)|e+iJzφTdecay|X〉 (12)

where Jz generates rotations about the "pX direction. We can
now think of the rotation operator as acting on the interaction
T -matrix plus ket, rather than on the bra. Assuming, Tdecay

is rotationally invariant, we only need to consider rotations of
the particleX about its own momentum axis. In this case,

Jz = "J · p̂ = ("s + "r × "p) · p̂ = "s · p̂ = h (13)

Thus, rotations about the momentum axis of a given helicity
state, h forX only produce a phase e+ihφ. So,

Mdecay(φ) = e+ihφMdecay(φ = 0) (14)

Thus, allowing for production over all possible helicity states
of X we must sum coherently over all possible amplitudes,
and so, the differential cross section takes the form

dσ

dφ
∝

∣

∣

∣

∣

∣

∑

h

Mprode
+ihφMdecay(φ = 0)

∣

∣

∣

∣

∣

2

(15)
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Henri Bachacou, Lepton-Photon 2011

>0.8–1TeV
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Is SUSY dead?

Henri Bachacou, Lepton-Photon 2011

>0.8–1TeV
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Minimal 
Supersymmetric SM

• MSSM has a special relationship between 
the Higgs self-coupling and the gauge 
coupling

• at the tree-level, mH<mZ=91GeV

• only thanks to higher order corrections, it 
can be made consistent with data

50

� = g22 + g021
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MSSM already fine-tuned
LEP combined hep-ex/0602042
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Figure 10: Exclusions in the case of the CP-conserving mh-max benchmark scenario, variant
(b) (see Section 2.1.1.). See the caption of Figure 7 for the legend.

69

max mixingmstop=1TeV

need heavy stop to increase
Higgs boson mass

MSSM predicts 
mh<mZ@tree-level
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Min SUGRA:   Fine-tuning

M2
Z

2
⇥ �|µ|2 + |m2

Hu
|

Cancellation

Kitano, Nomura 
hep-ph/0602096

Worse than
1 in 100

S. Martin hep-ph/9709356

Lawrence Hall
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Growing Concern
among theorists
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Two attitudes

• change the SUSY spectrum so that it can be 
lighter still allowed by LHC data, trying to 
maintain naturalness in the Higgs sector

• abandon naturalness and allow for heavy 
masses for (some of) the SUSY particles, 
rely on anthropic principle for v≪MPl

• always an interplay between SUSY vs Higgs
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Exception 1: Squeezing

I.Vivarelli - EPS-HEP, Grenoble July 21st-27th 2011

Result interpretation (1)

• Simplified model (pheno  MSSM) 
interpretation:

• LSP mass set to 0, all other 
sparticle masses set to 5 TeV 
except a common (1st and 2nd 

generation)  squark mass and the 
gluino mass (shown in the plot)

• Up to m ~ 1 TeV excluded for equal 
gluino-squark masses (2010 limit 
extended by ~250 GeV).

• Exclusion limit not too sensitive to the 
neutralino mass up to ~200 GeV
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No limit if LSP>350GeV
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gluino v stop

is OK

M1 = 100 GeV
µ = 200 GeV

here we fix,

there is starting to be borderline fine tuning...
or, said differently, things are now becoming interesting!
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Scherk-Schwarz

• For MSSM living on 5D with S1/Z2   
orbifold, one can break SUSY with 
boundary conditions

• @tree level, all SUSY particles degenerate 
at α/R (α<1, can be very small)

• all Kaluza-Klein particles degenerate at 1/R

• SUSY as light as 500 GeV still OK

59

HM, Nomura, Tobioka

y=0y= R

PTP = T�1, P 2 = 1

T = ei↵
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Minimal 
Supersymmetric SM

• MSSM has a special relationship between 
the Higgs self-coupling and the gauge 
coupling

• at the tree-level, mH<mZ=91GeV

• only thanks to higher order corrections, it 
can be made consistent with data

60

� = g22 + g021
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Figure 1: Contour plot of the Higgs quartic coupling renormalized at the supersymmetry breaking

scale m̃. The regions marked as “metastable” (yellow) and “unstable” (red) correspond to � < 0;

the green band shows the range of the Higgs mass allowed by the supersymmetric matching

condition for the Higgs quartic coupling, in the case of High-Scale Supersymmetry (left panel;

the dashed and dotted curves correspond to the cases of maximal and minimal stop threshold

corrections) and Split Supersymmetry (right panel, dashed curves; double contour-lines and

partially overlapped regions are due to the variation with tan � of the gaugino couplings). The

values of ↵3 and mt are fixed to their central values, see eq. (23), and the horizontal band

124GeV < mh < 126GeV shows the experimentally favored range.

In the case of Split Supersymmetry there is a partial overlap between these regions shown in

fig. 1 because the RGE involve the gaugino couplings which depend on the unknown parameter

tan �. Therefore mh does not uniquely determine the RG trajectory of the Higgs quartic

coupling � below m̃.

The regions described so far have no connection with the identification of m̃ with the

supersymmetry breaking scale. In this paper we are mostly interested in the last region:

• The green region covers the range of mh and m̃ allowed by High-Scale Supersymmetry

(left panel) and Split Supersymmetry (right panel), as determined by eq. (6). In the case

of High-Scale Supersymmetry, the boundary is computed both including (dashed line)

and ignoring (dotted line) the finite threshold correction of eq. (10).

In fig. 2 we show the predicted Higgs mass mh as a function of tan � and of the supersym-

metry breaking scale m̃. Values mh > 128GeV and mh < 115GeV have been experimentally

excluded and are shaded in gray. So far in the analysis we assumed the best fit values for mt

and ↵3, see eq. (23), computed the Split Supersymmetry thresholds at the weak scale assuming

10

SUSY all heavy SUSY scalars all heavy
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Figure 3: Next-to-leading order prediction for the Higgs mass mh in High-Scale Supersymmetry

(blue, lower) and Split Supersymmetry (red, upper) for tan � = {1, 2, 4, 50}. The thickness of

the lower boundary at tan � = 1 and of the upper boundary at tan � = 50 shows the uncertainty

due to the present 1� error on ↵3 (black band) and on the top mass (larger colored band).

matching condition:

��(m̃) ' Mm⌫

4⇡2v2
ln

m̃

M
for m̃ > M (29)

which is irrelevant if M <⇠ 1014 GeV.

5.1 Implications of present Higgs searches at the LHC

Recent data from ATLAS and CMS provide a 99% CL upper bound on the SM Higgs mass of 128

GeV and a hint in favor of a Higgs mass in the 124�126GeV range [17]. The main implications

for the scale of supersymmetry breaking can be read from fig. 3 and are more precisely studied

in fig. 5, where we perform a fit taking into account the experimental uncertainties on the top

mass and the strong coupling.

The scale of Split Supersymmetry is constrained to be below a few 108 GeV. This implies

a significant upper bound on the gluino lifetime [18]

⌧g̃ '
✓
TeV

M3

◆5 ✓
m̃

108 GeV

◆4

4⇥ 10�4 s. (30)

As the value of tan � increases, the bound on m̃ becomes rapidly much tighter, see fig. 5. For

instance, for tan � > 10, the scale of Split Supersymmetry must be below about 104 GeV and

the gluino lifetime must be less than 4⇥ 10�20(M3/TeV)�5 s.

12
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Figure 1: Left) The lightest Higgs boson mass as a function of M
SUSY

with µH = M
SUSY

. The
result is slightly lighter than the one in Ref. [25] due to the large µ-term (see the right panel).
Right) The lightest Higgs boson mass as a function of µH for M

SUSY

= 100TeV. In both panels,
the color bands show the 1� error of the top quark mass, m

top

= 173.2± 0.9GeV [26], while we
have taken the central value of the strong coupling constant, ↵(MZ) = 0.1184± 0.0007 [27]. We
have also fixed the gaugino masses to M

1

= 900GeV, M
2

= 300GeV and M
3

= �2500GeV as
reference values, although the predicted Higgs boson mass is insensitive to the gaugino masses.

Xt = At � µH cot � ' �µH cot � ,

m2

˜t = m2

tL
+m2

tR
, (11)

where At is the trilinear coupling constant between Higgs and stops, and m2

tL,R
denote

the squared soft masses of the left and right stops. Notice that At is expected to be

suppressed at the tree-level of the supergravity.6 Since µH is in the gravitino mass range

and tan � = O(1), this correction can be sizable in the pure gauge mediation model.

With these discussions in mind, we compute the lightest Higgs boson mass for given

M
susy

, µH and tan �. In our analysis, we numerically solve the full one-loop renormalization-

group equations of the Higgs quartic coupling, the gauge couplings, the gaugino couplings,

the Yukawa couplings of the third generation fermions, and the gaugino masses given in

Ref. [18]. We also include the weak scale threshold corrections to those parameters in

accordance with Ref. [24, 25]. Notice that we decouple the higgsino contributions to the

renormalization group equations at Q = µH and match the coupling constants below and

above that scale, since µH is much heavier than the TeV scale.

In Fig. 1, we show the parameter dependancies of the lightest Higgs boson mass. The

6Here, we again assume that hZi ⌧ MPL.

7

anomaly-mediated SUSY breaking
with heavy scalars, higgsinos
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• Before COBE, upper limit 
on CMB anisotropy kept 
getting better and better
• Before 1998, the universe 

appeared younger than 
oldest stars
• cosmologists got antsy
• “crisis in standard 

cosmology”
• it turned out a little “fine-

tuned”
• low quadrupole
• dark energy

uneasiness in 
cosmology
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– 73 –

Fig. 16.— The binned three-year angular power spectrum (in black) from l = 2 − 1000, where it provides a
cosmic variance limited measurement of the first acoustic peak, a robust measurement of the second peak,
and clear evidence for rise to the third peak. The points are plotted with noise errors only (see text). Note
that these errors decrease linearly with continued observing time. The red curve is the best-fit ΛCDM model,
fit to WMAP data only (Spergel et al. 2006), and the band is the binned 1σ cosmic variance error. The red
diamonds show the model points when binned in the same way as the data.
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too early to tell

• SM Higgs boson most likely be settled with 
this year’s data

• but it could take longer if not SM

• no sign of SUSY or other new physics

• not much better than what we already 
knew from LEP

• limits would improve ~200 GeV this year
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• We will definitely learn something on EWSB 
• Standard Model is indeed not the whole story:    

five evidences
• Theorists getting antsy: good job, LHC!
• Sometimes nature can be a little devious
• hope LHC is just a beginning of the new era
• LHC won’t stand alone: need other probes to reveal 

the picture at Terascale and beyond
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I feel lucky to 
live in this era!
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