
Quantum Criticality, high Tc 

superconductivity and the 

AdS/CFT correspondence. 

Jan Zaanen 
 

1 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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String theory: what is it really good 

for? 

- Hadron (nuclear) physics: quark-gluon plasma in RIHC. 

- Quantum matter: quantum criticality in heavy fermion 

systems, high Tc superconductors, … 

Started in 2001, got on steam in 2007. 

QuickTime™ and a
 decompressor

are needed to see this picture.

Son Hartnoll Herzog Kovtun McGreevy Liu Schalm 
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Quantum critical matter 

Quantum 

critical 

Heavy fermions 
High Tc 

superconductors 

Iron 

superconductors (?) 

Quark gluon plasma 

Quantum 

critical 



High-Tc Has Changed Landscape of Condensed Matter Physics 

High-resolution ARPES 

Spin-polarized Neutron 

Magneto-optics 

STM 

Transport-Nernst effect 

High Tc  

Superconductivity 

Angle-resolved MR/Heat Capacity 

Inelastic X-Ray Scattering  



QuickTime™ and a
 decompressor

are needed to see this picture.

? 

Photoemission 

spectrum 



6 

Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Gubser, Hartnoll …).   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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Plan 

2.  Crash course: the AdS/CFT correspondence. 

1.  Crash course: quantum critical electron matter in solids. 

 

3.  Holographic quantum matter: Planckian dissipation,  

marginal/critical Fermi-liquids, Fermi liquids and 

superconductors.  
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Twenty five years ago … 

Mueller Bednorz 

Ceramic CuO’s, 

likeYBa2Cu3O7 

Superconductivity 

jumps to ‘high’ 

temperatures 
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Graveyard of Theories  

Schrieffer  

Anderson    

Mueller    

Bednorz    

Laughlin     

Abrikosov     
Leggett     

Wilczek   

Mott   

Ginzburg 

De Gennes   

Yang 

QuickTime™ and a
 decompressor

are needed to see this picture.

Lee   
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The quantum in the kitchen: 

Landau’s miracle 
Kinetic energy 

k=1/wavelength 

Electrons are waves 

Pauli exclusion principle: every 

state occupied by one electron 

Fermi momenta 

Fermi 

energy 

Fermi surface of copper 

Unreasonable: electrons strongly 

interact !! 

Landau’s Fermi-liquid: the 

highly collective low energy 

quantum excitations are like 

electrons that do not interact. 
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BCS theory: fermions turning into 

bosons 

Fermi-liquid fundamentally unstable to 

attractive interactions. 

Bardeen Cooper Schrieffer 

Quasiparticles pair and Bose condense: 



BCS k uk  vkck
 ck

  vac.Ground state 

Conventional superconductors (Tc < 40K): 

“pairing glue”= exchange of quantized 

lattice vibrations (phonons) 



Fermion sign problem 

Imaginary time path-integral formulation   

Boltzmannons or Bosons: 

 integrand non-negative 

 probability of equivalent classical  

  system: (crosslinked) ringpolymers  

Fermions: 

 negative Boltzmann weights  

 non probablistic: NP-hard 

problem (Troyer, Wiese)!!! 
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Phase diagram high Tc 

superconductors 

QuickTime™ and a
 decompressor

are needed to see this picture.

The quantized 

traffic jam  
The quantum fog 

(Fermi gas) returns 

The clash: the quantum 

critical metal 

… which is good for 

superconductivity! 
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Divine resistivity 



Fractal Cauliflower (romanesco) 



Quantum critical cauliflower 



Quantum critical cauliflower  



Quantum critical cauliflower 



Quantum critical cauliflower 
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Quantum criticality or ‘conformal 

fields’ 
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Quantum critical hydrodynamics: 

Planckian relaxation time 



1



Planckian relaxation time = the shortest possible 

relaxation time under equilibrium conditions that can 

only be reached when the quantum dynamics is scale 

invariant !!   



kBT

Viscosity: 

“Planckian viscosity” 



s 
  p

T




Entropy density: 

Relaxation time     : time it takes to convert 

work in entropy. 



   
kBT



    p 






s
 T 

kB
??
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Critical Cuprates are Planckian 

Dissipators 

A= 0.7: the normal  state of optimallly doped cuprates is a           

Planckian dissipator! 



1(,T) 
1

4

 pr

2  r

1 2 r
2

,  r  A
kBT

van der Marel, JZ, … Nature 2003: 

Optical conductivity QC cuprates 

Frequency less than temperature: 



 [
kBT1

] const.(1 A2[


kBT
]2)
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Divine resistivity 

?! 
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Quantum Phase transitions 

Quantum scale invariance emerges naturally at a zero temperature 

continuous phase transition driven by quantum fluctuations: 

JZ, Science 319, 1205 (2008) 
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Phase diagram high Tc 

superconductors 

QuickTime™ and a
 decompressor

are needed to see this picture.

The quantized 

traffic jam  
The quantum fog 

(Fermi gas) returns 

The clash: the quantum 

critical metal 

… which is good for 

superconductivity! 



Fermionic quantum phase transitions 

in the heavy fermion metals 

Paschen et al., Nature (2004)   

JZ, Science 319, 1205 

(2008) 



m* 
1

EF

EF  0  m* 

QP effective mass 

‘bad 

actors’ 

Coleman 

Rutgers 



Critical Fermi surfaces  in heavy 

fermion systems 

Blue = Fermi liquid 

Yellow= quantum 

critical regime 

Antiferromagnetic 

order 

FL Fermi surface FL Fermi surface Coexisting critical 

Fermi surfaces ? 



28 

Hertz-Millis and Chubukov’s  

“critical glue” 

Fermi liquid 

Bosonic (magnetic, etc.) order 

parameter drives the quantum phase 

transition 

Electrons: fermion gas = heat bath 

damping bosonic critical fluctuations 

Bosonic critical fluctuations ‘back react’ 

as pairing glue on the electrons Supercon 

ductivity 

E.g.: Moon, Chubukov, J. Low Temp. Phys. 161, 

263 (2010) 
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“Strong coupling” Migdal-

Eliashberg theory 

Attractive interaction due to “glue boson”, two parameters: 

Coupling strength:  

Migdal parameter:  

Migdal-Eliashberg: dress boson and fermion propagators up to all orders 

ignoring vertex corrections which are O(              ). 



 V /EF



 boson

EF



B /EF
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Computing the pair susceptibility: 

full Eliashberg 
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Watching electrons: 

photoemission 
Kinetic energy 

k=1/wavelength 

Fermi momenta 

Fermi 

energy 

Fermi surface of copper 

Electron spectral function: probability to 

create or annihilate an electron at a 

given momentum and energy. 

QuickTime™ and a
 decompressor

are needed to see this picture.

k=1/wavelength 

Fermi 

energy 

energy 
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 Fermi-liquid 

phenomenology  

Bare single fermion propagator ‘enumerates the fixed point’: 

Spectral function: 

 
      





FRF kkvE

Z

imk
kG




2

1
,

2

0



ImG(,k)  A ,k 
 ,k 

   k  kF 
2

2m  ,k 
2

  ,k 
2

The Fermi liquid ‘lawyer list’: 

- At T= 0 the spectral weight is zero at the Fermi-energy except for the 

quasiparticle peak at the Fermi surface: 



A EF,k  Z  k  kF 

- Analytical structure of the self-energy: 

        












F

kk

F

E

FF kk
k

EkEk

FF







,,



 ,k    EF 
2


- Temperature dependence: 



 EF,kF,T T2 
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ARPES: Observing  Fermi liquids 

‘MDC’ at EF in conventional 

2D metal (NbSe2) 

Fermi-liquids: sharp Quasiparticle ‘poles’ 
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Cuprates: “Marginal” or “Critical” 

Fermi liquids  

Fermi ‘arcs’ (underdoped) 

closing to Fermi-surfaces 

(optimally-, overdoped). 

EDC lineshape: ‘branch cut’ (conformal), 

width propotional to energy 
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Varma’s Marginal Fermi liquid 

phenomenology. 

QuickTime™ and a
 decompressor

are needed to see this picture.

Fermi-gas interacting by second order perturbation theory with ‘singular heat bath’: 



ImP(q,)N(0)


T
, for | | T

N(0)sign  , for | | T

Directly observed in e.g. Raman ?? 



G(k,) 
1

  vF k  kF  (k,)



(k,)
g

c











2

 ln max | |,T /c  i


2
max | |,T 










1


max | |,T 

Single electron response (photoemission): 

Single particle life time                           is coincident (?!) with the 

transport life time => linear resistivity.       
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The fermionic criticality conundrum 

Kinetic energy 

k=1/wavelength 

Pauli exclusion principle generates the Fermi-

energy, Fermi surface. 

Fermi momenta 

Fermi 

energy 

Fermi surface of copper 

How to reconcile the quantum statistical scales with 

scale invariance? 

AdS/CFT gives an answer! 

Why is this quantum scale invariance of a local, 

purely temporal kind? 

How can a (heavy) Fermi-liquid emerge from a 

‘microscopic’ quantum critical state?  

Why is this state good for high Tc 

superconductivity, and a phletora of exotic 

“competing orders” ?  
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Plan 

2.  Crash course: the AdS/CFT correspondence. 

1.  Crash course: quantum critical electron matter in solids. 

 

3.  Holographic quantum matter: marginal/critical Fermi-liquids, 

Fermi liquids and superconductors.  
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General relativity “=“ quantum 

field theory 

Gravity Quantum fields 

Maldacena 1997 

= 



Holography with lasers 

Three dimensional image 
Encoded on a two 

dimensional 

photographic plate 



Gravity - quantum field 

holography 

Einstein world “AdS” = 

Anti de Sitter universe 

Quantum fields in flat space 

“CFT”= quantum critical  



1 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

0 
0 

0 0 
1 

0 0 

0 

0 0 
0 

1 

1 

0 

0 

1 

1 

0 

Hawking Temperature:   

g = acceleration at horizon 

A = area of horizon 

‘t Hooft’s holographic principle 

BH entropy: 

Number of degrees of freedom (field 

theory) scales with the area and not 

with the volume (gravity) 



The bulk: Anti-de Sitter space 

Extra radial dimension 

of the bulk <=> scaling 

“dimension” in the field 

theory 

Bulk AdS geometry = 

scale invariance of 

the field theory 

UV IR 
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Weak-Strong Duality 

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.
QuickTime™ and a

 decompressor
are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

Kramers-Wannier  

Einstein-Maxwell Large N Yang-Mills at 

large ‘t Hooft coupling 

Bulk: weakly 

coupled gravity 

Boundary: strongly coupled 

Quantum Field theory 
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Quantum critical dynamics: 

classical waves in AdS 



WCFT J  SAdS  x0 0 J

gYM
2 N 

R4



gYM
2  gs
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Fermionic renormalization 

group  

QuickTime™ and a
 decompressor

are needed to see this picture.

Wilson-Fisher RG: 

based on Boltzmannian 

statistical physics  

boundary:  

d-dim space-time 

Hawking radiation 
gluons 

Black holes 

strings 

quarks 

The Magic of AdS/CFT! 
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Plan 

2.  Crash course: the AdS/CFT correspondence. 

1.  Crash course: quantum critical electron matter in solids. 

 

3.  Holographic quantum matter: marginal/critical Fermi-

liquids, Fermi liquids and superconductors.  
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Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Gubser, Hartnoll …).   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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The black hole is the heater 

GR in Anti de Sitter space Quantum-critical fields on the boundary:  

Black hole 

temperature 

entropy 

- at the Hawking temperature  

- entropy = black hole entropy 
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Planckian dissipation  

Schwarzschild Black Hole: encodes for the finite 

temperature dissipative quantum critical fluid. 

Universal entropy production time:  



   
kBT

QuickTime™ and a
GIF decompressor

are needed to see this picture.





s


1

4 kB



 
1


 kBT

Minimal viscosity: quark gluon plasma, 

unitary cold atom fermion gas 

Linear resistivity high Tc metals: 
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Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Gubser, Hartnoll …).   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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 “AdS-to-ARPES”: Fermi-liquid (?) 

emerging from a quantum critical state.  

Schalm Cubrovic 

QuickTime™ and a
 decompressor

are needed to see this picture.
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Breaking fermionic criticality 

with a  chemical potential  
‘Dirac waves’ 

Electrical monopole 

k 

E 









Fermi-surface?? 
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AdS/ARPES for the Reissner-

Nordstrom non-Fermi liquids 

Critical FL Marginal FL Non Landau FL 

Fermi surfaces but no quasiparticles! 
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Holographic quantum critical 

fermion state 

QuickTime™ and a
 decompressor

are needed to see this picture.

Liu McGreevy 
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Horizon geometry of the extremal 

black hole: ‘emergent’ AdS2 => 

IR of boundary theory controlled 

by emergent temporal criticality  

QuickTime™ and a
 decompressor

are needed to see this picture.

Gravitational ‘mechanism’ for marginal 

(critical) Fermi-liquids: 



G1  vF k  kF  k, 



"
2 kF

Fermi-surface “discovered”  by matching 

UV-IR: like Mandelstam “fermion 

insertion” for Luttinger liquid! 

Temporal scale invariance IR “lands” in 

probing fermion self energy! 

Gravitationally coding the fermion        

propagators (Faulkner et al. Science 329, 1043, 2010) 
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Gravitationally coding the fermion        

propagators (Faulkner et al. Science Aug 27. 2010) 



GR ,k  F0 k  F1 k  F2(k)gk  



| k | kF



GR (,k) 
h1

k  kF  /vF   ,k 
;  ,k  hgkF   h2e

i kF
2 kF

T=0 extremal black hole, near horizon geometry ‘emergent scale invariant’:  



AdS2 R2  gk   c k 
2 k

Matching with the UV infalling Dirac waves: 

Special momentum shell: 

Miracle, this is like critical/marginal Fermi-liquids!!  

Space-like: IR-UV matching ‘organizes’ Fermi-surface. 

Time-like: IR scale invariance picked up via AdS2 self energy 
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Marginal Fermi liquid 

phenomenology. 

QuickTime™ and a
 decompressor

are needed to see this picture.

Fermi-gas interacting by second order perturbation theory with ‘singular heat bath’: 



ImP(q,)N(0)


T
, for | | T

N(0)sign  , for | | T

Directly observed in e.g. Raman ?? 



G(k,) 
1

  vF k  kF  (k,)



(k,)
g

c











2

 ln max | |,T /c  i


2
max | |,T 










1


max | |,T 

Single electron response (photoemission): 

Single particle life time                           is coincident (?!) with the 

transport life time => linear resistivity.       
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The zero temperature extensive 

entropy ‘disaster’ 

AdS-CFT 

The ‘extremal’ charged black 

hole with AdS2 horizon 

geometry has zero Hawking 

temperature but a finite 

horizon area. 

The ‘seriously entangled’ 

quantum critical matter at 

zero temperature should have 

an extensive ground state 

entropy (?*##!!) 
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Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Gubser, Hartnoll …).   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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Black hole hair can be fermionic! 
Schalm, Cubrovic, JZ (arXiv:1012.5681) 

‘Hydrogen atom’: one Fermion quantum 

mechanical probability density.  

AdS-CFT 

Stable Fermi liquid on the 

boundary!  
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Fermionic hair: stability and 

equation of state. 

Strongly renormalized EF Single Fermion spectral function: 

non Fermi-liquid Fermi surfaces 

have disappeared! 



The Fermi-liquid VEV: 

Hair profile vs. statistics 

• Scalar vs. fermionic hair: scale-free vs. scale-ful profile 

Position of the maximum 

determines the Fermi energy 

Bosons accumulate at the 

horizon 
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Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Gubser, Hartnoll …).   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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The holographic superconductor 
Hartnoll, Herzog, Horowitz, arXiv:0803.3295 

 

(Scalar) matter ‘atmosphere’ 

AdS-CFT 

Condensate (superconductor, 

… ) on the boundary! 

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

‘Super radiance’: in the 

presence of matter the 

extremal BH is unstable => 

zero T entropy always 

avoided by low T order!!! 
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“Bottom-up” : Minimal holographic 

superconductivity (H3)                        

What are the minimal bulk ingredients to capture the boundary superconductor?  

- Continuum theory                           in bulk.  



T  g

- Conserved charge                          in bulk. 

- Fermion pair operator                         in bulk. 

Write a minimal phenomenological bulk Lagrangian 

 J  A



 



L  R
6

L2


1

4
F abFab V     iqA

2
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Bulk geometry: AdS Reissner-

Nordstrom  black hole                      

Finite temperature and finite charge density: AdS RN black hole  

where  



g(r)  r2 
1

r
r

3 
2

4r











2

4r2

Scalar potential:  

Hawking temperature: 



ds2  g r dt 2 
dr2

g(r)
 r2 dx2  dy2 



A0  
1

r


1

r













T 
12r

4  2

16r
3
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The hairy black hole …                   

Minimal model:                            ,  the dual operator        can have conformal 

dimensions  

The Reissner-Nordstrom BH describes the normal state, but it goes unstable at 

a                            because                                      turns negative. 





V   22

T  Tc  



meff
2 m2 q2A0

2



 1, 2

Below Tc the black hole gets hair in the form of a “scalar atmosphere”: 

via the dictionary, a VEV emerges in the field theory in the absence of a 

source.  

The global U(1) symmetry of the CFT is spontaneously broken 

into a superfluid! 



The Bose-Einstein Black 

hole hair 

Scalar hair accumulates at 

the horizon 

QuickTime™ and a
 decompressor

are needed to see this picture.

Hartnoll Herzog Horowitz 

Mean field thermal transition. 
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Holographic superconductivity: 

stabilizing the fermions. 
Fermion spectrum for scalar-hair back hole (Faulkner et al., 911.340; 

Chen et al., 0911.282): 

‘BCS’ Gap in fermion 

spectrum !! 

Temperature dependence as expected for 

‘quantum-critical’ superconductivity (She, 

JZ, 0905.1225) 

Excessive temperature dependence 

‘pacified’ ! 
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‘Pseudogap’ fermions in high Tc 

superconductors 

10 K 

Tc = 82 K  

102 K 

Gap stays open above Tc 

But sharp quasiparticles 

disappear in incoherent 

‘spectral smears’ in the metal 

Shen group, Nature 450, 81 (2007)  
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“Double trace” Phase 

Diagram 

This looks like “quantum 

critical graphene” at zero 

density 

This is the “marginal 

Fermi-liquid” Liu style 
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More fanciful: Quantum phase 

transitions 

 
Quite different behaviors of the 

holographic quantum phase 

transitions by tuning the holographic 

SC down by mass or double trace 

deformation 

Iqbal, Liu, Mezeiar, arXiv: 1108.0425 

K.Jensen arXiv:1108.0421 
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Why is Tc high? 

“Because there is superglue binding the electrons in pairs” 

The superfluid density is tiny, it is very easy to ‘bend and 

twist’ a high Tc superconductor. Its cohesive energy sucks. 

Wrong! 

Tc’s are set by the competition between the two sides … 

The theory of the mechanism should 

explain why the free energy of  the 

metal is seriously BAD. 
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Observing the pairing mechanism … 

Claim: the maximal knowledge on the pairing mechanism 

is encoded in the temperature evolution of the normal state 

dynamical pair susceptibility,  



p q,  i dt eit0 t b(q,0),b(q,t) 
0







b q,t  c
kq / 2,

 (t)
k

 c
kq / 2,

 (t)
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Standard BCS “Critical glue” 

Holographic SC (AdS2) 



T Tc



p
'' ( )





Holographic SC (AdS4) QC-BCS 
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Standard BCS “Critical glue” 

Holographic SC (AdS2) 



T Tc



 /(kBT)

Holographic SC (AdS4) QC-BCS 



Tp
'' (



kBT
)
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Observing the origin of the pairing 

mechanism 

2nd order Josephson 

effect  Ferrell Scalapino 

1969 1970 
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Why Webb Pairing telescope? 



Itun V  Iqp V  Ipair(V)

Need large dynamical range:  



T, 10 100Tc
QC superconductor at ambient 

conditions with low Tc: 

CeIrIn5, Tc = 0.4K 

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

Probe superconductor: 

High Tc 

QC metal: 

Tunneling into d(?)-wave channel 

Full gap to suppress QP current (?) 

Cuprate ? 

MgB2 (Tc=40K)? 

Barrier is the challenge!  
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Holography and quantum matter 

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s 

normal state (Hong Liu, John McGreevy). 

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid 

(critical) ultraviolet, like heavy fermions (Schalm, Cubrovic, Hartnoll). 

Scalar hair: holographic superconductivity,  a new mechanism for 

superconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .   

“Planckian dissipation”: quantum critical matter at high temperature, 

perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).   
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Further reading 

AdS/CMT tutorials:                                                                                           

J. Mc Greevy, arXiv:0909.0518; S. Hartnoll, arXiv:0909.3553,1106.4324 

Non fermi-liquids:                                                                          

M. Cubrovic et al. Science 325,429 (2009); T. Faulkner et al.,  

Science 329, 1043 (2010); N. Iqbal et al., arXiv:1105.4621 

Holographic superconductors:                                   

J.-H. She et al., arXiv:1105.5377 

Fermi-liquids:                                                                                  

M. Cubrovic et al. arXiv:1012.5681,1106.1798; S. Hartnoll et al., 

arXiv:1105.3197 

Condensed matter tutorials:                                                                         

J. Zaanen, Science 319, 1205; arXiv:1012.5461 
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Thermodynamics: where are the 

fermions? 
Hartnoll et al.: arXiv:0908.2657,0912.0008 

Large N limit: thermodynamics entirely determined by 

AdS geometry.  

Fermi surface dependent thermodynamics, e.g. Haas van 

Alphen oscillations? 

Leading 1/N corrections: “Fermionic one-loop 

dark energy” 

Quantum corrections: one loop using Dirac quasinormal modes:  

‘generalized Lifshitz-Kosevich formula’ for HvA oscillations. 



osc.  
2osc.

B2

ATckF

4

eB3
cos

ckF
2

eB
e

cTkF

2

eb

T













2 1

Fn  

n 0







82 

Collective transport: fermion 

currents  

QuickTime™ and a
 decompressor

are needed to see this picture.

Tedious one loop calculation, ‘accidental’ cancellations: 

QuickTime™ and a
 decompressor

are needed to see this picture.

Hong Liu (MIT) 



FS "1 fermionT
2

‘Strange coincidence’ of one electron and transport lifetime of marginal fermi 

liquid finds gravitational explanation! 
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‘Shankar/Polchinski’ functional 

renormalization group 

interaction 

Fermi sphere 

UV: weakly interacting Fermi gas 

Integrate momentum shells: 

functions of running coupling 

constants 

All interactions (except marginal 

Hartree) irrelevant => Scaling limit 

might be perfectly ideal Fermi-gas  
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The end of weak coupling  

interaction 

Fermi sphere 

Strong interactings:  

Fermi gas as UV starting point 

does not make sense! 

=> ‘emergent’ Fermi liquid fixed 

point remarkably resilient (e.g. 3He) 

=> Non Fermi-liquid/non ‘Hartree-

Fock’ (BCS etc) states  of fermion 

matter? 
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Empty 
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Empty 


