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CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Axions

QCD axion

String axions

QCD axion was introduced to solve the Strong CP problem.

It is one of the candidates of dark matter.

Massive scalar particles (predicted theoretically).

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, 
PRD81 (2010), 123530.

String theory predicts the existence of 10-100 axion-like massive 
scalar fields.

There are various expected phenomena of string axions. 



Axion field around a rotating black hole

Zouros and Eardley, Ann. Phys. 118 (1979), 139.

Detweiler, PRD22 (1980), 2323.

Axion field makes a bound state and causes the superradiant 
instability



Bound state
Zouros and Eardley, Ann. Phys. 118 (1979), 139.

R =
u√

r2 + a2

d2u

dr2
∗

+
[
ω2 − V (ω)

]
u = 0

ω < ΩHm

Superradiant 
condition:

 0.14
 0.15
 0.16
 0.17
 0.18
 0.19
 0.2

 0.21
 0.22

-100 -50  0  50  100

V

r*/M

!2

V

I II III IV

Φ = Re[e−iωtR(r)S(θ)eimφ]



Growth rate

Dolan, PRD76 (2007), 084001.
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Accretion

Rotating Black Hole

Super-Radiant Modes

Decaying Modes

Gravitons

BH-axion system

Superradiant instability
Emission of gravitational waves
Pair annihilation of axions

Effects of nonlinear self-interaction
Bosenova
Mode mixing

Arvanitaki and Dubovsky, PRD83 (2011), 044026.



Nonlinear effect

c.f., QCD axion

Typically, the potential of axion field becomes periodic

U(1)PQ symmetry

PQ phase transition

V = f2
aµ2[1− cos(Φ/fa)]

ϕ ≡ Φ
fa

∇2ϕ− µ2 sinϕ = 0

QCD phase transition

Z(N) symmetrypotential becomes like a wine 
bottle⇒ ⇒



Accretion

Rotating Black Hole

Super-Radiant Modes

Decaying Modes

Gravitons

BH-axion system

Superradiant instability
Emission of gravitational waves
Pair annihilation of axions

Effects of nonlinear self-interaction
Bosenova
Mode mixing

Arvanitaki and Dubovsky, PRD83 (2011), 044026.



Bosenova in condensed matter physics
http://spot.colorado.edu/~cwieman/Bosenova.html

BEC state of Rb85（interaction can be controlled）
Switch from repulsive interaction to attractive interaction

Wieman et al., Nature 412 (2001), 295



What we would like to do

We would like to study the phenomena caused by axion 
cloud generated by the superradiant instability around a 
rotating black hole.

In particular, we study numerically whether “Bosenova” happens 
when the nonlinear interaction becomes important.

We adopt the background spacetime as the Kerr spacetime, and 
solve the axion field as a test field.
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Stable simulation cannot be realized in Boyer-
Lindquist coordinates. 

First difficulty
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Stable simulation cannot be realized in Boyer-
Lindquist coordinates. 

First difficulty
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We use ZAMO coordinates.

t̃ = t,

φ̃ = φ− Ω(r, θ)t,
r̃ = r,

θ̃ = θ,

Ω =
dφ

dt
=

uφ

ut
= − gtφ

gφφ

=
2Mar

(r2 + a2)2 −∆a2 sin2 θ



r∗

Φ

t/M = 0 ∼ 50

Numerical solution in the ZAMO coordinates



ZAMO coordinates become more and more 
distorted in the time evolution

Second difficulty
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ZAMO coordinates become more and more 
distorted in the time evolution

Second difficulty

We “pull back” the coordinates !6 !4 !2 0 2 4 6

!6
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r
S
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!""

t#50

t(n) = t,
φ(n) = φ− Ω(r, θ)(t− nTP ),
r(n) = r,
θ(n) = θ.

nTP ≤ t ≤ (n + 1)TP :



Pure ingoing BC at the inner boundary,
Fixed BC at the outer boundary

Our 3D code

Space direction：6th-order finite discretization

Time direction：4th-order Runge-Kutta

Courant number:

Pullback: 7th-order Lagrange interpolation

C =
∆t

∆r∗
=

1
20

Grid size:
∆r∗ = 0.5 (M = 1)
∆θ = ∆φ = π/30



r∗

Φ

t/M = 0 ∼ 100

Code check (1)

Comparison with semianalytic solution of the Klein-Gordon case

ω(CF)
I /µ = 3.31× 10−7

ω(Numerical)
I /µ = 3.26× 10−7

Growth rate

ωI =
Ė

2E
! E(100M)− E(0)

200ME(0)
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Setup

Numerical simulation

Sine-Gordon equation

∇2ϕ− µ2 sinϕ = 0

a/M = 0.99, Mµ = 0.4

As the initial condition, we choose the bound state of 
the Klein-Gordon field of the                        mode.l = m = 1
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Axion field on the equatorial plane

Simulation (A) 

−200 ≤ r∗/M ≤ 200

(φ = 0)
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ϕpeak(0) = 0.6
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Simulation (A) 
Peak value and peak location
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Fluxes toward the horizon

Energy and angular 
momentum distribution

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002

 0  200  400  600  800  1000

F
E
 a

n
d

 F
J

t/M

F
E

F
J

-10

 0

 10

 20

 30

 40

 50

 60

 70

-200 -100  0  100  200  300

d
E

/d
r
*

r
*
/M

t = 0

t = 1000M

-0.5

 0

 0.5

 1

 50  100  150  200

t = 0

t = 1000M

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-200 -100  0  100  200  300

d
J
/d
r
*

r
*
/M

t = 0

t = 1000M

-1

 0

 1

 2

 50  100  150  200

t = 0

t = 1000M



Axion field on the equatorial plane

Simulation (B) 

−200 ≤ r∗/M ≤ 200

(φ = 0)

Φ

(θ = π/2)

ϕpeak(0) = 0.7

density plot

r cos φ

r sinφ
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Simulation (B) 
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m=-1 mode is generated!

Simulation (B) 
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Summary of the simulations (A) and (B)

When the peak value is not very large, the nonlinear 
term enhances the rate of superradiant instability.

When the peak value is sufficiently large, the bosenova 
collapse happens.

The nonlinear effect makes energy distribute in the 
neighborhood of the black hole.

Once the bosenova happens, positive energy falls into the 
black hole, while the angular momentum continues to be 
extracted.

(A)

(B)



Contents
Introduction

Simulation

Code

Summary

Discussion

Typical two simulations

Does the bosenova really happen?

Green’s function analysis

Comparison with BEC system

Gravitational waves



Does bosenova really happen?

time

amplitude

Bosenova???

(A)

Saturation???

Additional simulation:

ϕ(0) = Cϕ(A)(1000M)

ϕ̇(0) = Cϕ̇(A)(1000M)
C =






1.05
1.08
1.09



Supplementary simulation ϕ(0) = Cϕ(A)(1000M)

ϕ̇(0) = Cϕ̇(A)(1000M)

Energy absorbed by the black hole ∆E :=
∫ t

0
FEdt

C!1.05

1.08

1.09
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Green’s function

(∇2 − µ2)x′G(x, x′) = δ4(x, x′)

Equation

ϕ(x) = ϕ0(x) + ∆ϕ, ϕ0 = 2Re
[
e(γ−iω0)tP (r)S1

1(cos θ)eiφ
]
,

Formal solution

BH

i

t=0

+

t, r 

r 
*

u=const.

=const. r =u
*

(      )*

i0

i-

Approximation

O(ϕ4
0) is ignored

Green’s function approach (1)

(∇2 − µ2)∆ϕ = J(ϕ0) := −µ2

6
ϕ3

0

∆ϕ(x) =
∫

D′
d4x′

√
! g(x′)G(x, x′)J(ϕ0(x′))



Green’s function approach (2)

Constructing the Green’s function

BH

i

t=0

+

t, r 

r 
*

u=const.

=const. r =u
*

(      )*

i0

i-

Gω
"m(r, r′) =

1
W"mω

[
θ(r − r′)R+

"mω(r)R−
"mω(r′) + θ(r′ − r)R−

"mω(r)R+
"mω(r′)

]
,

G(x, x′) =
1

(2π)2
∑

!,m

∫ ∞

−∞
dωGω

!m(r, r′)e−iω(t−t′)+im(φ−φ′)Sm
! (cos θ)S̄m

! (cos θ′),

Radial function

R+
!mω !

{
C+

!mωeikr/r, r →∞;
A+

!mωeiω̃r∗ + B+
!mωe−iω̃r∗ , r ! r+,

R−!mω !
{

A−!mωe−ikr/r + B−!mωeikr/r, r →∞;
C−!mωe−iω̃r∗ , r ! r+,

k =
√

ω2 − µ2, Im[k] ≥ 0

W (R−, R+) = 2iω̃(r2
+ + a2)C−!mωA+

!mω = 2ikC+
!mωA−!mω.



!!!
m"H

Green’s function approach (3)

Near-horizon solution

∆ϕ =
∑

!,m

eimφSm
! (cos θ)

eimΩHr∗

2i(r2
+ + a2)

×
{

e(3γ−imω0)uD#m(u, r∗)−
∫ ∞

−∞
dω

e−iωu

ω̃A+(ω)
#m [3γ + i(ω −mω0)]

E(ω)
#m (u, r∗)

}
,

First term

Second term
Pole ω = mω0 + 3iγ ∼ e−i(mω0+3iγ)t

Pole A
+(ω(!mn)

BS )
"m = 0 ∼

∑

n

(· · ·)e−iω(!mn)
BS t

ω(n)
BS ! ±µ ! ±ω0

Nonlinear term makes transfer from growing 
bound state to decaying bound state with 
negative frequency. 

∼ e−i(mω0+3iγ)t
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Action

BEC BH-axion

S = Nh̄

∫
d3xdt

[
iψ∗ψ̇ +

1
2
ψ∗∇2ψ − r2

2
ψ∗ψ − g

2
(ψ∗ψ)2

]

iψ̇ = −1
2
∇2ψ +

r2

2
ψ + g|ψ|2ψ

Gross-Pitaevskii equation

Action

Ŝ =
∫

d4x
√
−g

[
−1

2
(∇ϕ)2 − µ2

(
ϕ2

2
+ ÛNL(ϕ)

)]
,

Non-relativistic approximation

ŨNL(x) = −
∞∑

n=2

(−1/2)n

(n!)2
xn.

ϕ =
1√
2µ

(
e−iµtψ + eiµtψ∗

)

+
αg

r
ψ∗ψ − µ2ŨNL(|ψ|2/µ)

]

ŜNR =
∫

d4x

[
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
− 1

2µ
∂iψ∂iψ

∗

Saito and Ueda, PRA63 (2001), 043601

Action



Effective theory

BEC BH-axionψ = A(x, y, z, t)eiφ(x,y,z,t)

A =
exp

[
−( x2

2d2
x(t) + y2

2d2
y(t) + z2

2d2
z(t) )

]

√
π3/2dx(t)dy(t)dz(t)

φ =
ḋx(t)
2dx(t)

x2 +
ḋy(t)
2dy(t)

y2 +
ḋz(t)
2dz(t)

z2

dx = dy = dz = r(t)Spherical case

S =
Nh̄

4

∫
dt

[
3ṙ2 + 3ṙ − f(r)

]

0

2

4

6

8
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f!
r"

r

rc

!=#.$!c
!=!c

!=%.%!c

ψ = A(t, r, ν)eiS(t,r,ν)+imφ

A(t, r, ν) ≈ A0 exp
[
− (r − rp)2

4δrr2
p

− (ν − νp)2

4δν

]
,

S(t, r, ν) ≈ S0(t) + p(t)(r − rp) + P (t)(r − rp)2 + πν(t)(ν − νp)2 + · · · ,

N!"0.02
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Simulation results

BEC BH-axion

iψ̇ = −1
2
∇2ψ +

r2

2
ψ + g|ψ|2ψ
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GWs emitted in the bosenova (rough estimate)
Quadrupole moment

C!1.05

1.08

1.09
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#EQij ∼ r2
pE

rp ∼ 10M

About 5% of energy falls into the BH

E0 ∼ 10−3M

E = E0 + (∆E/2) [cos(πt/∆t)− 1]

∆E ∼ 0.05E0 ∆t ∼ 500M

Amplitude of generated GWs

h ∼ Q̈ij

robs
∼ 10−7 M

robs



Detectability

Supermassive BH of our galaxy（Sagittarius A*）

Solar-mass BH (e.g., Cygnus X-1)

h ∼ Q̈ij

robs
∼ 10−7 M

robs

Detectable by the LISA

hrss ∼ 10−24(Hz)−1/2

below the sensitivity of the Advanced LIGO, 
KAGRA (LCGT), etc.

(10−4 Hz)

(102 Hz)

Angular frequency 
of GW

hrss :=
[∫

|h|2dt

]1/2

∼ 10−16(Hz)−1/2
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Summary

We developed a reliable code and numerically studied the 
behaviour of axion field around a rotating black hole.

The nonlinear effect enhances the rate of superradiant instability 
when the amplitude is not very large.

Calculation of the gravitational waves emitted in bosenova.

Issues for future

The case where axions couple to magnetic fields.

The bosenova collapse would happen as a result of superradiant 
instability.


