Out-of-equilibrium dynamics of coherent non-abelian fields

J. Berges

IKP Theory Center Technische Universität Darmstadt

Institute for Theoretical Physics Universität Heidelberg

SPONSORED BY THE

Federal Ministry of Education and Research

Nonequilibrium QCD

Relativistic heavy-ion collisions explore strong interaction matter starting from a transient *nonequilibrium* state

Thermalization process?

Schematically:

Characteristic nonequilibrium time scales? Relaxation? Instabilities?

Nonequilibrium dynamics of coherent fields

Color Glass:

'color flux tubes'

 $\Delta R_{\perp} \sim \frac{1}{O_{\perp}}$ transverse sizes

1) Consider extreme case: constant color magnetic field pointing in z-direction

$$B^a_j = \delta^{1a} \delta_{3j} B$$
 from $A^1_x = -\frac{1}{2} y B$, $A^1_y = \frac{1}{2} x B$ (all other zero)

 \rightarrow exponential growth of fluctuations (Nielsen-Olesen instability) with maximum rate

$$\sqrt{gB} \sim Q_s$$

Nielsen, Olesen '78; Chang, Weiss '79; ... Iwasaki '08; Fujii, Itakura '08 ...

2) Consider less extreme case: *temporal* modulations on scales $\gtrsim 1/\sqrt{gB}$

$$B_j^a = \delta^{1a} \delta_{3j} B$$
 from $A_x^2 = A_y^3 = \sqrt{\frac{B}{g}}$

(all other zero)

 \rightarrow non-linear part of field strength tensor

Classical equation of motion:

$$\left(D_{\mu}[A]F^{\mu\nu}[A]\right)^{a} = 0$$

Time-dependent background field $\bar{A}^a_{\mu}(x^0)$:

$$A^{a}_{\mu}(x) = \bar{A}^{a}_{\mu}(x^{0}) + \delta A^{a}_{\mu}(x)$$

temporal (Weyl) gauge with $A_0^a = 0$ and

$$\bar{A}^a_i(t)=\bar{A}(t)\left(\delta^{a2}\delta_{i1}+\delta^{a3}\delta_{i2}\right)$$
 , $\bar{A}(t=0)=\sqrt{B/g}$

• Background-field equation: $(D_{\mu}[\bar{A}]F^{\mu\nu}[\bar{A}])^{a} = 0$

$$\Rightarrow \quad \partial_t^2 \bar{A}(t) + g^2 \bar{A}(t)^3 = 0$$

$$(0) = (1)$$

Oscillating solution: $\bar{A}(t) = \sqrt{\frac{B}{g}} \operatorname{cn}\left(\sqrt{gB}t, \frac{1}{2}\right)$ with period $\Delta t_B = \frac{4K(1/2)}{\sqrt{gB}} \simeq \frac{7.42}{\sqrt{gB}}$

Compare e.g. scalar $\lambda \Phi^4$ theory:

- early universe inflaton dynamics (preheating)

 non-rel. gas of ultracold atoms (Gross-Pitaevski), λ~a (s-wave scattering length)
 B. Novak, RG-conference

 \rightarrow talks next week

• Linearized fluctuation equation, *SU*(2):

$$\left(D_{\mu}[\bar{A}]D^{\mu}[\bar{A}]\delta A^{\nu}\right)^{a} - \left(D_{\mu}[\bar{A}]D^{\nu}[\bar{A}]\delta A^{\mu}\right)^{a} + g\epsilon^{abc}\delta A^{b}_{\mu}F^{c\mu\nu}[\bar{A}] = 0$$

maximally amplified modes: $\delta A_{-} = \delta A_{2}^{3} - \delta A_{1}^{2}$ or $\delta A_{1}^{3} + \delta A_{2}^{2}$

$$\Rightarrow \qquad \partial_t^2 \delta A_-(t, p_z) = \left(g^2 \bar{A}(t)^2 - p_z^2 \right) \delta A_-(t, p_z) \qquad (p_x = p_y = 0)$$

Oscillator with time-dependent frequency with 'wrong sign' for $p_z^2 < g^2 \bar{A}(t)^2$ approximate solution: $(\bar{A}(t=0) = \sqrt{B/g})$

→ similar to Nielsen-Olesen instability with time-averaged magnetic field

$$g\overline{B} \equiv \frac{gB(t=0)}{2K(1/2)} \int_0^{2K(1/2)} \mathrm{d}x \,\mathrm{cn}^2\left(x,\frac{1}{2}\right) \approx 0.457 \, gB(t=0)$$

Non-linear evolution: Classical-statistical lattice gauge theory

Wilson action:

(real time!)

$$[U] = -\beta_0 \sum_{x} \sum_{i} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,0i} + \operatorname{Tr} U_{x,0i}^{-1} \right) - 1 \right\} + \beta_s \sum_{x} \sum_{i,j \atop i < j} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,ij} + \operatorname{Tr} U_{x,ij}^{-1} \right) - 1 \right\}$$

Plaquette variables $U_{x,\mu\nu} \equiv U_{x,\mu}U_{x+\hat{\mu},\nu}U_{x+\hat{\nu},\mu}^{\dagger}U_{x,\nu}^{\dagger} \approx \exp\left[-iga^2F_{\mu\nu}(x)\right]$ Here: $\beta = \beta_0 / \gamma = \beta_s \gamma = 4$, temporal gauge, *SU*(2), *no expansion*

Sampling introduces classical-statistical fluctuations ('loops') \rightarrow non-linear evolution, accurate for sufficiently 'large fields/high occupation' numbers:

anti-commutator $\langle \{A, A\} \rangle \gg \langle [A, A] \rangle$ commutator

 \rightarrow 'working horse' for instability dynamics

S

Romatschke, Venugopalan; Berges, Gelfand, Sexty, Scheffler, Schlichting; Kunihiro, Müller, Ohnishi, Schäfer, Takahashi, Yamamoto; Fukushima, Gelis; ...

Nonequilibrium coherent fields on the lattice

cf. also Berges, Scheffler, Sexty, PRD 77 (2008) 034504

with Sexty, Scheffler, in preparation

Isotropization

3) Choose initial homogeneous fields randomly (ensemble)

with zero mean and width $<\sqrt{gB}\sim Q_s$

with Sexty, Scheffler, in preparation

very efficient isotropization for ensemble averaged homogeneous fields!
 → early equation of state for hydrodynamics

Comparison to previous ensembles

Initial conditions: stochastically generated inhomogeneous fields with

$$\langle |A_j^a(t=0,\vec{k})|^2 \rangle \sim C \exp\{-\frac{k_x^2+k_y^2}{2\Delta_z^2}-\frac{k_z^2}{2\Delta_z^2}\}$$

and $Q_s \sim \Delta \gg \Delta_z$ (extreme oblate anisotropy)

Berges, Scheffler, Sexty, PRD 77 (2008) 034504 (SU(2)); + Gelfand, PLB 677 (2009) 210 (SU(3))

Coherence speed-up

Compare:

spatially homogeneous fields vs. stochastic inhomogeneous fields

Inverse primary growth rates: e.g. $\varepsilon_{RHIC} \sim 5-25 \text{ GeV/fm}^3$, $\varepsilon_{LHC} \sim 2 \times \varepsilon_{RHIC}$

 $1/\gamma_{NO} \simeq 0.3 - 0.6$ fm/c

$$1/\gamma \simeq 1.0 - 1.8$$
 fm/c

Non-linear dynamics leading to turbulence

- Scaling exponent close to perturbative Kolmogorov value at high *p*: $\kappa = 4/3$ Berges, Scheffler, Sexty, PLB 681 (2009) 362; see also Fukushima, Gelis, arXiv:1106.1396 [hep-ph]
- Nonperturbative infrared scaling behavior with $\kappa = 4$ ($\kappa = 5$) expected Infrared "occupation number" ~ $1/g^2 \rightarrow$ strongly correlated! Universal!

Berges, Rothkopf, Schmidt '08; Berges, Hoffmeister '09; Scheppach, Berges, Gasenzer '10; Carrington, Rebhan '10; Nowak, Sexty, Gasenzer '10; ...

 \rightarrow see also talks next week

Quantum corrections and fermions

- Classical-statistical gauge field description accurate for
 - \rightarrow sufficiently large field expectation values/highly occupied modes
 - → but quantum corrections at low occupied higher momenta inclusion into simulations using *inhomogeneous 2PI effective action*

cf. Berges, Roth, NPB 847 (2011) 197

• Fermions: $n_{\psi}(p) \leq 1$ (Pauli principle)

 \rightarrow no classical-statistical approximation

→ enhancement of quantum corrections from highly occupied bosons!

$$\frac{g}{g} = \frac{g}{g} = -\frac{O(1)}{2}$$

Requires real-time lattice simulations with dynamical fermions!

cf. Berges, Gelfand, Pruschke, PRL 107 (2011) 061301

Conclusions & Outlook

• coherent fields can lead to ultra-fast dynamics:

 $1/\gamma_{NO}\simeq 0.3-0.6~fm/c$

for typical LHC/RHIC energies

- very efficient isotropization for ensemble averaged homogeneous fields!
 → early equation of state for hydrodynamics
- non-linear dynamics crucial for efficient development of turbulence
- \rightarrow perturbative Kolmogorov scaling exponent at high *p*: $\kappa = 4/3$
- → non-perturbative scaling exponent at low p? shown to be true for scalars PRL 101 (2008) 041603
- enhancement of quark corrections to O(1) from highly occupied bosons? shown to be true for quark-meson model PRL 107 (2011) 061301
- \rightarrow real-time dynamical fermions on the lattice in 3+1 dimensions

Non-linear dynamics with expansion

soft

see also Venugopalan, Romatschke '06; Fukushima, Gelis '11

Sören Schlichting