Infrared fixed point for many flavor SU(N) gauge theory

Etsuko Itou (Osaka University)

To appear arXiv 1108:xxxx

Renormalization Group Approach from Ultra Cold Atoms to the Hot QGP 2011/08/25@YITP, Kyoto

Collaborators

- T.Aoyama, M. Kurachi, H. Ohki, T.Yamazaki (Nagoya University)
- H. Ikeda (Sokendai, KEK)
- C.-J David Lin, K. Ogawa (NCTU)
- H. Matsufuru (KEK)
- T. Onogi (Osaka University)
- E. Shintani (Riken-BNL)

Numerical simulation was carried out on NEC SX-8 and SR16000 in YITP, Kyoto University NEC SX-8 in RCNP, Osaka University SR11000 and BlueGene in KEK 100 GPU in Taiwan

Introduction

Summary of our work

- We study SU(3) gauge theory coupled with Nf=12 fundamental fermions
- Measure the running coupling constant in this theory and search for an IR fixed point
- Derive the universal quantities around the fixed point

Introduction

In the case of SU(3) coupled with fundamental fermions

•Two-loop running coupling : $\mu \frac{d}{d\mu} \alpha(\mu) = \beta(\alpha) = -b \alpha^2(\mu) - c \alpha^3(\mu)$

Higgs sector in the Standard Model Lagrangian

$$\mathcal{L}_H \sim \frac{1}{2} D_\mu \phi D^\mu \phi^\dagger + \frac{\lambda}{4} (\phi \phi^\dagger - v^2)^2$$

Problem with a fundamental Higgs boson

No fundamental scalars observed in nature Hierarchy problem (need fine-tuning to cancel a quadratic divergence) Triviality problem

$$\beta(\lambda) = \frac{3\lambda^2}{2\pi^2} > 0$$

No interaction at low energy Running coupling constant diverges at a finite energy Cuttoff theory?

Candidates for the origin of Higgs sector Supersymmetry Extra dimension Walking techni-color Fourth generation

••••

Conditions which techni-color gauge interaction should be satisfied >TC coupling should be large at TC scale > Λ_{ETC} is larger than 10³ TeV >beta fn. has (nearly) zero point at a large TC coupling

Constraints for ETC scale

Constraints for quark mass term

Recent Study of Lattice groups

Program at Lattice 2011

There are two plenary talks, more than 18 parallel session talks and several poster session talks concerning with ``conformal window"

J Kuti	Twelve flavors with three colors and two flavors with six colors below the conformal window	E Pallante	On the spectrum of many-flavor QCD		D Schaich	S parameter and parity doubling below the conformal window	T DeGrand	Gauge theories with fermions in the two-index symmetric representation
G Fleming	Infrared conformality and lattice simulations	Y Aoki K-I Nagai	KMI project on many flavor QCD with N f=12 and 16		H Ohki	Study of the infrared	Y Shamir	Renormalized coupling from gluon exchange in
X-Y Jin	Lattice QCD with 12 Degenerate Quark		KMI (Nagoya) project; Many flavor QCD as exploration of the			theory with eight flavors		the Schrödinger functional
	Flavors The Infrared behavior of SU(3) Nf=12 gauge		walking behavior with approximate IR fixed		T Karavirta G Voronov	Exploring the conformal window: SU(2) gauge	D Sinclair	transition for QCD with sextet quarks
K Ogawa	theory -about the existence of conformal fixed point-	M Lin	Lattice simulations of SU(3) gauge theory with ten flavors of Dirac fermions			Lattice Study of the Extent of the Conformal Window in Two-Color	S Sint	Perturbative lattice artefacts in the SF coupling for technicolor inspired models
		C Schroeder	The Running Coupling and Finite Temperature for Twelve Flavors and Three Colors		M Buchoff	Yang-Mills Theory Pion scattering in QCD-like theories		

SU(3) gauge theory coupled with fundamental fermion

The other gauge theory The other representation of fermion

below conformality

coupling change in

chnicolor-

The Lattice study for IR behavior of many flavor QCD theory

- Study the running coupling constant
- Measure the universal quantities
- Investigate the phase structure (chiral symmetry)

Running coupling

A definition of nonperturbative renormalized coupling

$$\begin{array}{lll} \langle O \rangle_{NP} &\equiv Z_O \langle O \rangle_{tree} & \mbox{Lattice simulation can calculate the vev of } <0 >_{\rm NP} \\ &= Z_O g_0^2 k & \mbox{g}_R^2 \equiv \langle O \rangle_{NP} / k \\ &\equiv g_R^2 k & g_R^2 \equiv \langle O \rangle_{NP} / k \end{array}$$

Examples of scheme

- Schrodinger functional scheme
- Wilson loop scheme : Phys.Rev.D80:034507(2009)
- Twisted Polyakov Loop scheme :

no O(a/L) error scheme

Nonperturbative definition of renormalized coupling in TPL scheme

$$g_{TP}^{2} = \frac{1}{k} \frac{\langle \sum_{y,z} P_{1}(y,z,L/2a) P_{1}(0,0,0)^{*} \rangle}{\langle \sum_{x,y} P_{3}(x,y,L/2a) P_{3}(0,0,0)^{*} \rangle}$$

In SU(3) lattice gauge theory, the VEV of operator O depends on

Lattice size (Lo) Lattice spacing (a) bare coupling constant

"renormalized coupling" on lattice

$$g_R^2(a, L_0, g_0)$$

 $\beta = 2N/g_0^2$

How to take the continuum limit

$$g_R^2\left(\frac{1}{L_0}\right) \equiv \lim_{a \to 0} Z_R\left(\frac{a}{L_0}, g_0^2\right)\Big|_{L_0} g_0^2$$

To take the continuum limit, we have to set the scale "a". It corresponds to tuning g_0^2 to keep a certain input physical parameter constant.

input
$$g_R^2(1/L_0)$$
 output $g_R^2(1/sL_0)$ IR cutoff is moving

s : scaling parameter

Status of SU(3) Nf=12 theory

Running coupling constant on Lattice

Appelquist' group (SF scheme), Phys.Rev.D79:076010,2009

The running coupling shows a flat region The value of fixed point coupling g^{2~5}. It consists with 3-loop lattice perturbative analysis.

Fodor's group: (potential scheme) arXiv:0911:2463 [hep-lat], talk at Lattice2010

The renormalized coupling is larger than 1,2,3-loop perturbartive result.

The coupling at low energy region is growing. (No fixed point.)

Continuum extrapolation in SF scheme

Our result

Continuum Extrapolation

(TPL scheme)

Running coupling constant in TPL scheme

Exponent of the beta function

 $g^2(\mu/s)/g^2(\mu)$

Around the fixed point, the beta function can be approximated by linear function:

$$\beta(g^2) \sim \gamma_g^*(g^{2*} - g^2)$$

Our result: $s^{-\gamma_g^*} = 0.82 \pm 0.07$ $\gamma_g^* = 0.27 - 0.71$

SF scheme (Appelquist) $\gamma_g^* = 0.13 \pm 0.03$

 $\gamma_g^*=0.36$

Mass anomalous dimension -preliminary resultsMeasure the psuedo-scalar correlator

$$P(t,x) = \bar{\psi}(t,x)\gamma_5\psi(t,x)$$
$$C_P(t) = \sum_x \langle P(t,x)P(0,0) \rangle$$

Z factor

$$P_R(g_0, a/L) \equiv Z_P(g_0, a/L)P(t)$$

 $C_P^{tree}(t) \equiv Z_P(g_0, a/L)^2 C_P(t)$ at fixed t

$$Z_P(g_0, a/L) \equiv \sqrt{\frac{C_P^{tree}(t)}{C_P(t)}}$$

scaling function

$$\sigma_P(u,s) = \lim_{a \to 0} \frac{Z_P(g_0, a/sL)}{Z_P(g_0, a/L)} \Big|_{g^2 = u}$$

anomalous dimension at the fixed point

$$-\gamma^* = -\frac{\log(\sigma_R(u,s))}{\log(s)}$$

PCAC relation in QCD

 $\partial_{\mu}(A_R)_{\mu} = 2mP_R$

Our result (Mass step scaling fn. ~ Zm factor)

The other works

Study IR behavior of Masses for composite operators and chiral condensate

They measured lattice data include a fermion mass .Then, they extrapolated to massless limit using small mass expansion.

 Fodor group (arXiv:1104.3124)
 Chiral symmetry broken
 hypothesis works well
 rather than conformal
 hypothesis! > Appelquist group (arXiv:1106.2148) Conformal hypothesis also works well! $M_X \sim C_X m^{1/(1+\gamma*)}$

$$\langle \bar{\Psi}\Psi \rangle = (c_0 + c_1 m + c_2 m^2)$$

X-Y. Jin (Columbia U group)
 Chiral symmetry is broken in IR simulation

KMI group
 Measure the psedoscalar mass

Mass deformation

Raw Data (arXiv:1104.3124, Fodor et al.)

The simulation input parameters are lattice size and fermion mass.(beta=2.2 =enough low energy)

Appelquist's group used only largest volume data for each m value .

Lattice size	Fermion mass	Measured masses			
24^3 × 48	0.035	"Pion"			
32^3 × 64	0.020	"Pion" decay constant			
40^3 × 80	••••	"axial vector"			
48^3 × 96	0.015	"scalar"			
	0.010 🗸	••••			
nearly cont.lim.	massless lim.	Chiral condensate			

Table 1: Measured masses and F_{π} with the three largest volumes in the m = 0.01 - 0.02 range and the largest volume for m > 0.02. Asterisks indicate $L_x = 32$ when different from the spatial volume of the second column. M_{pnuc} is the mass of the nucleon's parity partner.

mass	lattice	M_{π}	F_{π}	M _{i5}	M _{sc}	M _{ij}	M _{nuc}	M _{pnuc}	M _{Higgs}	M _{rho}	M _{A1}
0.0100	$48^3 \times 96$	0.1647(23)	0.02474(49)	0.1650(13)	0.16437(95)	0.1657(10)	0.3066(69)	0.3051(81)	0.247(13)	0.1992(28)	0.2569(83)
0.0100	$40^{3} \times 80$	0.1819(28)	0.02382(39)	0.1842(29)	0.1835(35)	0.1844(44)	0.3553(93)	0.352(16)	0.2143(81)	0.2166(73)	0.237(12)
0.0100	$32^3 \times 64$	0.2195(35)	0.02234(46)	0.2171(31)	0.194(10)	0.195(11)	0.386(16)	0.387(22)	0.2162(53)	0.239(19)	0.246(21)
0.0150	$48^3 \times 96$	0.2140(14)	0.03153(51)	0.2167(16)	0.2165(17)	0.2185(18)	0.3902(67)	0.3881(84)	0.296(13)	0.2506(33)	0.3245(87)
0.0150	$40^{3} \times 80$	0.2200(23)	0.03167(53)	0.2210(21)	0.2218(30)	0.2239(34)	0.4095(84)	0.411(10)	0.291(11)	0.2574(36)	0.327(14)
0.0150	$32^3 \times 64$	0.2322(34)	0.03168(64)	0.2319(11)	0.2318(17)	0.2341(16)	0.4387(60)	0.4333(84)	0.2847(33)	0.2699(41)	0.324(16)
0.0200	$40^{3} \times 80$	0.2615(17)	0.03934(56)	0.2736(22)*	0.2651(8)	0.2766(42)*	0.4673(62)	0.4699(66)	0.330(17)	0.3049(28)	0.361(32)
0.0250	$32^3 \times 64$	0.3098(18)	0.04762(53)	0.3179(17)	0.3183(18)	0.3231(20)	0.563(12)	0.563(14)	0.4137(88)	0.3683(19)	0.469(14)
0.0275	$24^3 \times 48$	0.3348(29)	0.05218(85)	0.3430(18)	0.3425(25)	0.3471(26)	0.609(21)	0.628(23)	0.460(16)	0.4050(69)	0.523(34)
0.0300	$24^3 \times 48$	0.3576(15)	0.0561(11)	0.3578(15)*	0.3726(29)	0.3790(40)	0.640(12)*	0.633(16)*	0.470(15)	0.4160(26)*	0.5222(90)*
0.0325	$24^3 \times 48$	0.3699(66)	0.0588(15)	0.3790(34)	0.3814(62)	0.3879(62)	0.680(18)	0.686(26)	0.500(21)	0.4481(39)	0.548(31)
0.0350	$24^3 \times 48$	0.3927(17)	0.06422(57)	0.4065(18)	0.4074(19)	0.4149(26)	0.703(28)	0.741(20)	0.538(30)	0.4725(64)	0.669(65)

Conformal hypothesis with mass deformation

The running mass

(if there is a fixed point)

$$m(\mu) = m(\Lambda) \exp(\int_{\mu}^{\Lambda} \frac{\gamma(\mu)}{\mu} d\mu)$$
$$= m(\Lambda/\mu)^{\gamma*}$$

We assume the running mass satisfies at some IR scale M $\quad m(M) = M$

Mass of physical state X is set by the scale M. $M_X = m(\Lambda/M_X)^* \simeq C_X m^{1/1+\gamma*}$

There is a correction term in a small-m expansion:

$$M_X = C_X m^{1/(1+\gamma*)} + D_X m$$

The chiral condensate can be written by $\langle \bar{\psi}\psi \rangle_M \simeq M^3 (\Lambda/M)^{\gamma} * \simeq B_c m^{(3-\gamma*)/(1+\gamma*)}$

The leading term should be added in small-m expansion:

$$\langle \bar{\psi}\psi \rangle_M = A_c m + B_c m^{(3-\gamma*)/(1+\gamma*)}$$

Conformal and broken examples

SU(2) Nf=2 ADOJOINT fermions (widely believed to be conformal in IR.)

Gamma^{*} is free parameter for each fit. Plot the χ^2 as a function of gamma^{*}. The best fit value: gamma^{*}=0.17(5). This value is consistent with a direct measurement.

SU(3) Nf=2 fundamental fermions (known to be in broken phase, but use the conformal hypothesis fit.)

No clear minimum for any channel.

In the case of SU(3) Nf=12

They fit Fodor's data at largest volume for each m value. The small volume data may be suffered from a finite volume effect.

The minimum χ^2 for each mass occur at a similar value of gamma*. Except for chiral condensate... B_c and C_c is strongly correlated and A_c is dominated. (Need more simulation data.)

Fitting the data universal anomalous dim.

They global fit the data using universal anomalous dimension.

The data can be fitted by a function using conformal hypothesis. $X^2/dof\sim 2.508$ (dof=53). The mass anomalous dimension at the fixed point: gamma*= 0.403(13)

Conclusion of Appelquist's papers

Fodor's data can be described with similar fit quality between chiral broken hypothesis $(x^2/dof - 0.81)$

with

conformal hypothesis ($x^2/dof \sim 2.5$).

In these hypotheses, m should be small to control massless extrapolation.

Further simulations at additional m will help to distinguish the two scenario.

The other question comes from this plot in the case of Nf=12.

Why does the minimum of each channel appear different gamma?

Mass deformation with additional relevant op.

Summary and Discussion

Is there IR fixed point in SU(3) Nf=12 theory?

Appelquist group:YES (SF scheme g^2*~5, constant continuum extrapolation)
Fodor group : NO (Potential scheme, before taking continuum limit)
A. Hasenfratz :YES (MonteCalro RG, bare step scaling)
Our group :YES! (TPL scheme g^2*~2.4, a^2 quadratic extrapolation)

Chiral condensate

Fodor group : chiral symmetry is broken (huge lattice size and low beta region) Columbia U group : chiral symmetry is broken Appelquist group : the same data can be fitted by conformal hypothesis

Anomalous dimension for psuedo-scalar operator

Appelquist group : gamma*= 0.403(13) using conformal hypothesis with mass deformation KMI group : gamma*~0.47-0.58 Our group : gamma*~0.29 by directly measurement

Discussion

The other theories

SU(3) Nf=10 fundamental fermion by N.Yamada's group using Wilson fermion SU(2) Nf=2 adjoint fermion by del Debbio's group SU(2) Nf=8 fundamental fermion by H.Ohki (Our group)

Lattice data will give phenomenological and theoretical information around nontrivial fixed point in near future.

BACK UP SLIDES

Introduction

To explain the origin of electro-weak symmetry breaking, we introduce an additional strong gauge interaction, and the composite state will be a seed of SSB. There is a scenario based on a conformal theory in IR region.

