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Hadronic matter under extreme conditions

• hadronic matter                                
at finite temperature and density 

[STAR experiment, RHIC, BNL]

[GSI]• heavy-ion collisions
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• SU(3) gauge theory of strongly interacting quarks and 
gluons 

• chiral flavor symmetry: symmetry for 2 massless quarks     
(flavors (u, d))

ψL → ULψL ψR → URψR

SU(2)L × SU(2)R

Technische Universität München

QCD: chiral symmetry and confinement

SQCD =
�

d4x

�
ψ̄ (i /D −m) ψ − 1

4
FµνFµν

�

momentum momentum

spin spin

left-handed quarks right-handed quarks
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Spontaneous chiral symmetry breaking

• chiral symmetry is spontaneously broken                              
in the QCD ground state

• order parameter: chiral condensate

• Goldstone bosons of spontaneous symmetry breaking: 
pions are the (almost massless) low-energy degrees of 
freedom

• low-momentum QCD: theory of weakly interacting pions

Technische Universität München

Chiral symmetry restoration and deconfinement

• Chiral quark condensate 
21
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FIG. 11: Renormalized Polyakov loop on lattices with temporal extent Nτ = 4, 6 and 8 (left) and the normalized difference of
light and strange quark chiral condensates defined in Eq. 36. The vertical lines show the location of the transition temperature
determined in [22] on lattices with temporal extent Nτ = 4 (right line) and in this analysis for Nτ = 6 (left line).

quark mass differs slightly from the one used in that earlier study. We therefore performed a new determination of
the transition temperature for the Nτ = 6 lattice and the parameters of the LCP used here. From the peak positions
of the disconnected parts of the light and strange quark susceptibilities we find βc(Nτ = 6) = 3.445(3). Using the
value for r0/a quoted for this value of the coupling in Table I we find4 Tcr0 = 0.466(6) or Tc = 196(3).

We note that the region of most rapid change in the subtracted and normalized chiral condensate, ∆l,s(T ), is in
good agreement with the region where the Polyakov loop expectation value as well as bulk thermodynamic quantities,
e.g. the energy and entropy densities change most rapidly.

VII. DISCUSSION AND CONCLUSIONS

We have presented here a detailed analysis of the QCD equation of state with an almost physical quark mass
spectrum. The current calculations have been performed with a physical strange quark mass value and two degenerate
light quark masses that are about a factor two larger than the physical average light quark mass value. In a wide
temperature range, results have been obtained on large spatial lattices close to the thermodynamic limit for two
different values of the lattice cut-off, corresponding to lattices of temporal extent Nτ = 4 and 6. At high temperatures
additional calculations on lattices with temporal extent Nτ = 8 have been performed, which allow us to control
apparent cut-off effects in this temperature range. All finite temperature calculations have been supplemented with
corresponding zero temperature calculations to perform necessary vacuum subtractions and to accurately set the
temperature scale.

At high temperature, T>∼2Tc, bulk thermodynamic observables such as pressure, energy and entropy density deviate
from the continuum Stefan-Boltzmann values only by about 10% and show little cut-off dependence. This weak cut-
off dependence could only be achieved through the use of O(a2) improved gauge and fermion actions. On the other
hand, a closer look at the trace anomaly, (ε− 3p)/T 4, from which these quantities are derived, clearly unravels cut-off
effects when comparing results obtained for the Nτ = 4 and 6 lattices; for temperatures T>∼2.5Tc or equivalently
T>∼500 MeV results for (ε − 3p)/T 4 on the Nτ = 4 lattices are systematically lower than for Nτ = 6. Additional
calculations performed on Nτ = 8 lattices in this high temperature region are consistent with the results obtained on
Nτ = 6 lattices and thus suggest that cut-off effects are small on lattice with temporal extent Nτ ≥ 6. Of course, this
should be confirmed through additional calculations on lattices with temporal extent Nτ = 8 at larger temperatures.
On these fine lattices it also will be interesting to analyze in more detail the contribution of charm quarks to the
equation of state [38, 39].

4 Our earlier analysis for ml = 0.1ms on a 1636 lattice, performed with a 20% larger strange quark mass, gave Tcr0 = 0.4768(51) or
Tc = 201(2).

[M. Cheng et al., Phys. Rev. D 77 (2008) 014511.]

• strictly speaking, not a true 
phase transition

• finite quark mass
• crossover

�ψ̄ψ�(T )
�ψ̄ψ�(0)

�ψ̄ψ� = �ψ†
LψR + ψ†

RψL� �= 0

4

m→0



Technische Universität München

Deconfinement: Z(3) symmetry breaking

• Polyakov loop acts as order parameter 

• Z(3) center symmetry 

• Polyakov loop corresponds to free energy of a free static 
quark:

Φ→ zΦ

Φ(�x ) =
1

Nc
Tr

�
exp i

� 1/T

0
dτA4(�x, τ)

�

�Φ� �= 0 �Φ� = 0

Φ ∼ exp (−Fq/T )

z = exp
�
i
2πn

Nc

�

confined phase: Z(3) symmetricde-confined phase: Z(3) symmetry spontaneously broken
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Chiral symmetry restoration and deconfinement

• Chiral quark condensate 

[M. Cheng et al., Phys. Rev. D 77 (2008) 014511.]

• finite quark mass
• strictly speaking, not a true 

phase transition
• crossover
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Chiral symmetry restoration and deconfinement

• Chiral quark condensate 
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FIG. 11: Renormalized Polyakov loop on lattices with temporal extent Nτ = 4, 6 and 8 (left) and the normalized difference of
light and strange quark chiral condensates defined in Eq. 36. The vertical lines show the location of the transition temperature
determined in [22] on lattices with temporal extent Nτ = 4 (right line) and in this analysis for Nτ = 6 (left line).
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We note that the region of most rapid change in the subtracted and normalized chiral condensate, ∆l,s(T ), is in
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VII. DISCUSSION AND CONCLUSIONS

We have presented here a detailed analysis of the QCD equation of state with an almost physical quark mass
spectrum. The current calculations have been performed with a physical strange quark mass value and two degenerate
light quark masses that are about a factor two larger than the physical average light quark mass value. In a wide
temperature range, results have been obtained on large spatial lattices close to the thermodynamic limit for two
different values of the lattice cut-off, corresponding to lattices of temporal extent Nτ = 4 and 6. At high temperatures
additional calculations on lattices with temporal extent Nτ = 8 have been performed, which allow us to control
apparent cut-off effects in this temperature range. All finite temperature calculations have been supplemented with
corresponding zero temperature calculations to perform necessary vacuum subtractions and to accurately set the
temperature scale.

At high temperature, T>∼2Tc, bulk thermodynamic observables such as pressure, energy and entropy density deviate
from the continuum Stefan-Boltzmann values only by about 10% and show little cut-off dependence. This weak cut-
off dependence could only be achieved through the use of O(a2) improved gauge and fermion actions. On the other
hand, a closer look at the trace anomaly, (ε− 3p)/T 4, from which these quantities are derived, clearly unravels cut-off
effects when comparing results obtained for the Nτ = 4 and 6 lattices; for temperatures T>∼2.5Tc or equivalently
T>∼500 MeV results for (ε − 3p)/T 4 on the Nτ = 4 lattices are systematically lower than for Nτ = 6. Additional
calculations performed on Nτ = 8 lattices in this high temperature region are consistent with the results obtained on
Nτ = 6 lattices and thus suggest that cut-off effects are small on lattice with temporal extent Nτ ≥ 6. Of course, this
should be confirmed through additional calculations on lattices with temporal extent Nτ = 8 at larger temperatures.
On these fine lattices it also will be interesting to analyze in more detail the contribution of charm quarks to the
equation of state [38, 39].

4 Our earlier analysis for ml = 0.1ms on a 1636 lattice, performed with a 20% larger strange quark mass, gave Tcr0 = 0.4768(51) or
Tc = 201(2).
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• strictly speaking, not a true 
phase transition

• finite quark mass
• crossover
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light and strange quark chiral condensates defined in Eq. 36. The vertical lines show the location of the transition temperature
determined in [22] on lattices with temporal extent Nτ = 4 (right line) and in this analysis for Nτ = 6 (left line).

quark mass differs slightly from the one used in that earlier study. We therefore performed a new determination of
the transition temperature for the Nτ = 6 lattice and the parameters of the LCP used here. From the peak positions
of the disconnected parts of the light and strange quark susceptibilities we find βc(Nτ = 6) = 3.445(3). Using the
value for r0/a quoted for this value of the coupling in Table I we find4 Tcr0 = 0.466(6) or Tc = 196(3).

We note that the region of most rapid change in the subtracted and normalized chiral condensate, ∆l,s(T ), is in
good agreement with the region where the Polyakov loop expectation value as well as bulk thermodynamic quantities,
e.g. the energy and entropy densities change most rapidly.

VII. DISCUSSION AND CONCLUSIONS

We have presented here a detailed analysis of the QCD equation of state with an almost physical quark mass
spectrum. The current calculations have been performed with a physical strange quark mass value and two degenerate
light quark masses that are about a factor two larger than the physical average light quark mass value. In a wide
temperature range, results have been obtained on large spatial lattices close to the thermodynamic limit for two
different values of the lattice cut-off, corresponding to lattices of temporal extent Nτ = 4 and 6. At high temperatures
additional calculations on lattices with temporal extent Nτ = 8 have been performed, which allow us to control
apparent cut-off effects in this temperature range. All finite temperature calculations have been supplemented with
corresponding zero temperature calculations to perform necessary vacuum subtractions and to accurately set the
temperature scale.

At high temperature, T>∼2Tc, bulk thermodynamic observables such as pressure, energy and entropy density deviate
from the continuum Stefan-Boltzmann values only by about 10% and show little cut-off dependence. This weak cut-
off dependence could only be achieved through the use of O(a2) improved gauge and fermion actions. On the other
hand, a closer look at the trace anomaly, (ε− 3p)/T 4, from which these quantities are derived, clearly unravels cut-off
effects when comparing results obtained for the Nτ = 4 and 6 lattices; for temperatures T>∼2.5Tc or equivalently
T>∼500 MeV results for (ε − 3p)/T 4 on the Nτ = 4 lattices are systematically lower than for Nτ = 6. Additional
calculations performed on Nτ = 8 lattices in this high temperature region are consistent with the results obtained on
Nτ = 6 lattices and thus suggest that cut-off effects are small on lattice with temporal extent Nτ ≥ 6. Of course, this
should be confirmed through additional calculations on lattices with temporal extent Nτ = 8 at larger temperatures.
On these fine lattices it also will be interesting to analyze in more detail the contribution of charm quarks to the
equation of state [38, 39].

4 Our earlier analysis for ml = 0.1ms on a 1636 lattice, performed with a 20% larger strange quark mass, gave Tcr0 = 0.4768(51) or
Tc = 201(2).

Φ(T )

�ψ̄ψ�(T )
�ψ̄ψ�(0)

• Polyakov loop

• crossover in presence of 
quarks
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m→0

m→∞



Technische Universität München

Phase transitions in QCD
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[F. .Karsch and E. Laermann, arXiv:hep-lat/0305025.]

SU(3)L × SU(3)R

SU(2)L × SU(2)R
Z(3)

→ O(4)



perturbative QCD and experiment

! Asymptotic freedom at high momemtum
scales (Politzer ’73, Gross and Wilczek ’73)

! running coupling at small momentum scales?
−→ pQCD fails (Landau-pole)

! confinement, χSB

(Bethke ’04)

Technische Universität München

Methods for studying QCD

• QCD: perturbative at large momentum scales,                               
non-perturbative at low momentum scales Q

• chiral perturbation theory: Effective Field Theory                         
systematic expansion of low-energy QCD

• lattice QCD: simulation of the gauge                           
theory in finite Euclidean space-time                              
volume

8

x
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Methods for studying QCD

• Dyson-Schwinger Equations for QCD                                
[C. Fischer and R. Alkofer, J. Lücker, ...]

• functional Renormalization Group methods 
– for models, including confinement [B.-J. Schaefer, T. Herbst, A. Tripolt, V. Skokov, B. 

Friman, K. Redlich ...]

– for QCD  [J. Braun, H. Gies, L. Haas, L. Fister, Pawlowski, ... ]

• (chiral) model calculations for transition regions                    
➞ this talk
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• finite volume introduces an additional scale 1/L:       
probes different momentum regions, like temperature T

• no real phase transitions, critical long-range behavior 
affected by the volume size

• quark boundary conditions: what to choose in a finite 
spatial volume? periodic or anti-periodic?

Technische Universität München

QCD in a finite volume

finite-volume effects in the analysis?
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Topics

• Critical scaling for the chiral phase transition                   
in infinite and finite volume

• Phenomenological implications of finite-volume effects for 
the QCD phase diagram 

long-range fluctuations: Renormalization Group (RG) methods

11



ΓΛ[ψ̄, ψ,σ,�π] =
�

d4x
�

ψ̄(i /∂ )ψ + gψ̄(σ + iγ5�τ · �π)ψ

+
1
2
(∂µσ)2 +

1
2
(∂µ�π )2 + UΛ(σ,σ2 + �π2)

�

Technische Universität München

The quark-meson model
• a model for chiral symmetry breaking
• no gauge degrees of freedom

• chiral symmetry breaking: SU(2) × SU(2) → SU(2)           
as  O(4) → O(3) (meson sector)

• specify effective action for the model at initial scale Λ
• use functional Renormalization Group                    

(Wetterich equation) to obtain effective action                
[C.Wetterich, Phys. Lett. B 301 (1993) 90.]     

�σ� �= 0
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Renormalization Group calculation

Technische Universität München

• RG flow equation with 3d optimized cutoff function:      
change of  effective potential with change of RG scale k

• volume dependence encoded in mode-counting functions 

• depends on choice of boundary conditions                          
(for the spatial directions)

13

k∂kUk(φ2) = k5

�
3

Eπ

�
1
2

+ nB(Eπ)
�
Bp(kL) +

1
Eσ

�
1
2

+ nB(Eσ)
�
Bp(kL)

−2NcNf

Eq

�
1− nF (Eq, µ)− nF (Eq,−µ)

�
Bp(kL)

�

➞ see also talk by M. Scherer
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Critical behavior, scaling and universality

• Critical point (e.g. second-order phase transition) 
• diverging correlation length ξ ∼ 1/Mσ → ∞
• critical long-range fluctuations dominate the physics of           

a system close to the critical point
• universality classes: the same critical behavior is 

observed in different systems with the same symmetries 
and dimensionality

• critical behavior is characterized  by a few                
critical exponents β, γ, δ, ν and scaling functions

finite volume cuts off long-range fluctuation and 
impacts critical scaling behavior!
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• Scaling function for the order parameter M ( fπ  ,          ):
t = (T − Tc)/T0, h = H/H0

M(t, h) = h1/δfM (z) z = t/h1/(βδ)

�ψ̄ψ�

χσ(t, h) =
∂M

∂H
(t, h) =

1
H0

h
1/δ−1

fχ(z)

M(t, h = 0) = (−t)β M(t = 0, h) = h1/δ

Technische Universität München

Scaling behavior in infinite volume

15

• Scaling function for the susceptibility χσ :

• two relevant couplings: temperature T and symmetry 
breaking (quark mass m) H
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Susceptibility χσ from the model: O(4)
• susceptibility χσ for small values of mπ < 0.9 MeV

16
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Abbildung 7.13: (a) Sigma-Suszeptibilität als Funktion von t, Mπ bei T = 0 liegt zwi-
schen 0.2 MeV und 0.9 MeV; (b) Reskalierte Sigma-Suszeptibilität als
Funktion von z Mπ bei T = 0 liegt zwischen 0.2 MeV und 0.9 MeV.
Das Maximum χres,max = 0.33 liegt bei z = 1.31.
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• rescaled susceptibility χσ H0 h1-1/δ

[P. Piasecki, J. Braun, and B. Klein,  Eur. Phys. J. C71, 1576 (2011)]

O(4)
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Susceptibility χσ from the model: O(4)

• rescaled susceptibility χσ H0 h1-1/δ for realistic values of mπ

17
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Abbildung 7.14: (a)-(b) Reskalierte Pionenzerfallskonstante und Suszeptibilität als
Funktion von z für große Pionenmassen und zum Vergleich jeweils ein
Plot mit Mπ → 0.
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• apparent scaling for 
large quark masses
• differs from actual 
scaling function!
• sensitivity to quark 
mass larger than in QCD

[P. Piasecki, J. Braun, and B. Klein,  Eur. Phys. J. C71, 1576 (2011)]
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Infinite volume scaling in finite volume?
• rescaled susceptibility χσ H0 h1-1/δ in finite volume

18
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[P. Piasecki, J. Braun, and B. Klein (2010), 
arXiv:1008.2155]

• mπ = 75 MeV
• deviations from 

infinite-volume scaling 
for L < 6 fm

• effects probably 
weaker in lattice QCD

susceptibility increase susceptibility decrease χσ  ∼  L2



M(t, h, L) = L−β/νQM (z, h̄), h̄ = hLβδ/ν

χσ(t, h, L) = Lγ/νQχ(z, h̄)

Technische Universität München

Scaling behavior in finite volume

• correlation length is cut off by finite volume size L
• Volume size L appears as additional relevant coupling
• Finite-size scaling functions with additional scaling variable

19

• Finite-size scaling function for the order parameter:

• Finite-size scaling function for the susceptibility:
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Finite size scaling: Susceptibility χσ
• susceptibility in finite volume

20
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Finite size scaling: Susceptibility χσ
• finite-size scaled susceptibility

21
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L [fm] Mπ [MeV] Mπ L
4 139 2.82
6 85 2.59
8 60 2.43

10 45 2.30
20 19 1.94
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QCD phase diagram

• second-order phase transition for two flavors in the chiral limit                 
[R. D. Pisarski and F. Wilczek, Phys. Rev. D 29 (1984) 338]

• crossover at finite quark masses for finite temperature at µ = 0
• conventional expectation:                                                                                                         

first-order phase transition with critical end point

22

at finite chemical potential
...very schematically...

curvature κ
crossover 
(second order 
for 2 massless quarks)

µ

T

first-order 
transition
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Curvature of the transition line

23

• at small baryon chemical potential µ, the phase transition 
line is characterized by the curvature κ

• “sign problem” in lattice QCD:                                 
simulations are difficult at finite µ 

• curvature can be calculated in lattice QCD (imaginary 
chemical potential, Taylor expansion) [P. de Forcrand and O. Philipsen, 
Nucl. Phys. B 642 (2002) 290, JHEP 01 (2007) 077; F. Karsch et al., Nucl. Phys. Proc. Suppl. 129, 614 
(2004).]

differences partially due to finite-volume effects? 

RG methods:
[J. Braun, Eur. Phys. J. C64, 459 (2009)]

Tχ(L,mπ, µ)
Tχ(L,mπ, µ = 0)

= 1− κ

�
µ

(πTχ(L,mπ, 0))

�2

+ . . .
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Why Finite-volume effects?

• curvature depends on the  sensitivity of the system on 
the chemical potential

• sensitivity in turn depends on the                        
“constituent quark mass”

• constituent quark mass affected by volume!
24
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• periodic boundary 
conditions for quarks

• decreasing curvature 
in intermediate 
volume

• corresponds to 
decreasing pion 
mass/increasing 
constituent quark 
mass

• decreased sensitivity 
to chemical potential [B.-J. Schaefer, J.Braun, B. Klein]

Change of curvature in finite volume

∆κ =
κ(L,mπ)− κ(∞,mπ)

κ(∞,mπ)
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Phase diagram for QCD models in 
finite volume - qualitative results

• qualitatively clear effects of 
finite volume on curvature

• phase transition line tends to 
flatten in an intermediate 
volume range

• curvature increases 
dramatically for very small 
volumes

L → ∞

Lc ! L < ∞

L < Lc

µ

T
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Phase diagram for QCD models in 
finite volume - first results

• potential discretized 
on a mesh grid

• first-order phase 
transition can be 
determined

• effects on critical 
point can be 
determined

27

[A. Tripolt, B.-J. Schaefer, J.Braun, B. Klein]
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Effects of the quark boundary conditions

• Pion mass shift in V = L3 × 1/T in quark-meson model
• periodic vs. anti-periodic quark boundary conditions (b.c.)

[J. Braun, B. Klein, H.-J. Pirner, Phys. Rev. D72, 034017 (2005).] 
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   p bc, T = 1/L
fπ ∼ �σ�

�ψ̄ψ� ∼ �σ�

m2
π = m

�ψ̄ψ�
f2

π

∼ m

�σ�

[J. Luecker et al., Phys. Rev. D81, 094005 (2010); D.B. Carpenter, C.F. Baillie, Nucl. Phys. B 260, 103 (1985).] 
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Quark contributions for a finite volume

• quark momentum modes 
contributing to the 
condensate (and the 
constituent quark mass) in a 
large finite volume 

• zero-mode                            
for periodic b.c.

• no zero mode                    
for anti-periodic b.c.

Λ

k

2π
L
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Quark contributions for a finite volume

• quark momentum modes 
contributing to the 
condensate (and the 
constituent quark mass) in a 
small finite volume

• enhancement of the zero-
mode contribution ∼1/V for 
periodic b. c.

2π
L

Λ

k
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Comparison to Chiral Perturbation Theory
• comparison of model results with anti-periodic boundary 

conditions from RG to ChPT in NNLO ChPT data thanks to G. Colangelo                              
[G. Colangelo, S. Dürr, C. Haefeli, Nucl. Phys. B 271 (2005) 136.]
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agreement only for 
this choice of 
boundary conditions!

keep boundary 
conditions in mind for 
the finite-volume 
analysis of lattice 
QCD results
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Conclusions

• Scaling functions from the functional renormalization 
group for the analysis of the QCD chiral phase transition: 
Results from a model for the chiral phase transition

• Finite-size effects in lattice simulations can lead to 
significant deviations from expected scaling behavior

• Additional finite-volume effects for curvature of transition 
line is expected

• choice of spatial quark boundary condition is important!
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