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1.  BCS-BEC Crossover: Basics and Phase diagram
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BCS-BEC Crossover: Basics

• (a kF)-1 < −1: weakly attractive, Cooper pairing → below Tc : BCS superfluidity

• (a kF)-1 >   1: two-body bound state, formation of molecules → below Tc : interacting BEC

• |(a kF)-1| < 1: strongly correlated regime, Unitarity limit at (a kF)-1 → 0

Cooper pairs

bound state, 
weak i.a. between molecules

weak attractive i.a. 0

inverse s-wave scattering length (a kF)-1 in units of the Fermi momentum

T < Tc: BCS-Superfluid T < Tc: BEC of moleculesUnitary regime

• Ultracold gases of fermionic atoms (6Li, 40K) → 2 accessible hyperfine spin states

• Spin-balanced case (for strong spin-imbalance, cf. talk by R. Schmidt)

bound state disappears
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BCS-BEC Crossover: Feshbach Resonance
• Feshbach resonance:  Vary effective i.a. strength or (a kF)-1 by external magnetic field

• Feshbach resonance allows to tune i.a. strength arbitrarily in an experiment

• Challenge and testing ground for non-perturbative approaches to strongly interacting QFTs

BEC BCS

600 700 800 900 1000 1100 1200
�10

�5

0

5

10

Magnetic field �G�Sc
at
te
rin
g
le
ng
th
�1000

a 0
�

(a kF)-1

6Li

5



• Limit of broad Feshbach resonances (e.g. experiments with 6Li and 40K)

• TD quantities independent of microscopic details → can be expressed by two parameters:

• Units set by density n = (kF)3/(3π2)

(a kF)-1   &   T/TF

BCS-BEC Crossover: Universality

Cooper pairs

bound state, 
weak i.a. between molecules

weak attractive i.a. 0

inverse s-wave scattering length (a kF)-1 in units of the Fermi momentum

T < Tc: BCS-Superfluid T < Tc: BEC of moleculesUnitary regime
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• Microscopic model:

• Observable thermodynamics from grand canonical partition function:

... to be evaluated non-perturbatively!

BCS-BEC Crossover: Model

• two-component Grassmann field:

• chemical potential: 

• natural units:

• bare four-fermion coupling: 

ψ = (ψ1, ψ2)

µ

� = kB = 2m = 1

S[ψ†,ψ] =

� 1/T

0
dτ

�
d3x

�
ψ†(∂τ − �∇2 − µ)ψ +

λ̄ψ

2
(ψ†ψ)2

�

λ̄ψ = λ̄ψ(B)

ZG =

�
Dψ†Dψe−S[ψ†,ψ]
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BCS-BEC Crossover: Phase Diagram

• Critical temperature for the phase transition to superfluidity

(akF)-1

Tc/TF

superfluid

normal fluid
Interacting BEC
1[Baym et al. 1999]
2[Arnold & Moore 2001]
3[Blaizot et al. 2004]

BCS+Gorkov

QMC
4[Burovski et al. 2006]
5[Akkineni et al. 2007]
6[Bulgac et al. 2008]
7[Wingate et al. 2010]
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2. FRG Studies of the BCS-BEC Crossover

with Stefan Flörchinger, Sebastian Diehl, Holger Gies, Jan Pawlowski 
and Christof Wetterich
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• Continuum formulation in terms of effective action

• Wetterich equation:

Functional RG and Theory Space

∂kΓk[χ] =
1

2
STr

��
Γ(2)
k +Rk

�−1
∂kRk

�

Γ[χeq] = ΦG/T, where ΦG = −T ln Z

Theory Space

Γ0(T = 0, n = 0) → scattering physics

Γ0(T "= 0, n "= 0) → thermodynamics

ΓΛ = S

[MIT experiment]
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Hubbard-Stratonovich Field and Yukawa Coupling

• Introduce a complex scalar by Hubbard-Stratonovich transformation:

Complex scalar: Molecule field, Cooper pairs,...

• s-wave scattering length:

a = − h̄2

8πµM (B −B0)

S[ψ†,ψ] =

� 1/T

0
dτ

�
d3x

�
ψ†(∂τ − �∇2 − µ)ψ +

λ̄ψ

2
(ψ†ψ)2

�

λ̄ψ h̄ h̄
φ̄
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Truncation and Thermodynamic Phases

• Effective potential: Expansion around the scale-dependent location of its minimum

Uk(ρ, µ) = m2(ρ− ρ0) +
1

2
λ(ρ− ρ0)

2

+ U(ρ0, µ0)− n(µ− µ0) + α(µ− µ0)(ρ− ρ0)

• Classification of the thermodynamic phases of the system:

Symmetric regime : ρ0 = 0, m2 > 0

Symmetry broken regime : ρ0 > 0, m2 = 0

Phase transition : ρ0 = 0, m2 = 0

Γk[Φ] =

�

τ,�x

�
ψ†(∂τ − �∇2 − µ)ψ + φ∗(Zφ∂τ −

�∇2

2
)φ+ U(ρ, µ)− h (φ∗ψ1ψ2 + φψ∗

2ψ
∗
1)

�
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BCS-BEC Crossover: Phase Diagram
• Critical temperature for the phase transition to superfluidity:

(akF)-1

Tc/TF
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superfluid

normal fluid

• At Unitarity and T=0, n≠0: • Scattering physics in BEC limit:
aM/a = 0.59

exact result: aM/a = 0.60 9[Petrov et al. 2004]

Interacting BEC
1[Baym et al. 1999]
2[Arnold & Moore 2001]
3[Blaizot et al. 2004]

BCS+Gorkov

QMC
4[Burovski et al. 2006]
5[Akkineni et al. 2007]
6[Bulgac et al. 2008]
7[Wingate et al. 2010]

FRG approach
8[Floerchinger, MS, Wetterich 
2010]

10[Krippa 2008]
11[Bartosch et al. 2009]

* * more RG results are available:

µ/EF ∆/EF

Carlson et al. (2003) (QMC) 0.43 0.54
Perali et al. (2004) (t-matrix approach) 0.46 0.53

Floerchinger, MS, Wetterich (2010) (FRG) 0.51 0.46

13



3. Finite System Size Study

with Jens Braun and Sebastian Diehl
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Motivation
• Analysis of data from lattice simulations (performed in a finite volume)

• For unitary Fermi gas: Studies by MC community:

• Lattice studies: 

• Limited range of system sizes

• Numerically expensive 

• Cannot investigate transition between finite system and continuum limit

• FRG can! (recall talk by B. Klein)

Unitary regime

1[Wingate et al. 2009]
2[Kaplan et al. 2010]
3[Forbes et al. 2011]
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Setup for Finite-size Study
• Finite cubic volume V with spatial extent L

• Boundary conditions of fermions in spatial directions are periodic, cf. lattice

• Finite external pairing source J which couples to order-parameter field

• Grand canonical ensemble: Average particle number fixed by chemical potential µ

• Investigate unitary regime (a → ∞) at T=0 and n≠0

• In continuum limit we have the universal quantities:

Bertsch parameter:

Fermion gap:

• In finite volume: Bertsch parameter and fermion gap will depend on L and J

• Study deviation from TD limit as a function of L and J

ξ =
µ

EF

∆

EF

Universal Quantities

1[Bulgac et al. 2006]

2[Kaplan et al. 2003]
3[Wingate et al. 2009]
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• Go to frequency/momentum space by  FT:

• In a finite volume, we obtain summation over discrete momenta:

ω(φ) = 2mπT, ω(ψ) = (2m+ 1)πT, �q = �n
2π

L
, �n = (n1, n2, n3), ni,m ∈ Z

(τ, �x) → (ω(φ/ψ), �q)

• Flow equations can be evaluated for different system sizes L

• In the limit (L → ∞) we recover the well known flow equations for infinite volume

• Truncation:

Γk[Φ] =

�

τ,�x

�
ψ†(∂τ − �∇2 − µ)ψ + φ∗(Zφ∂τ − ∆

2
)φ+ U(ρ, µ)− h (φ∗ψ1ψ2 + φψ∗

2ψ
∗
1)

+
1√
2
J(φ+ φ∗)

�

Finite Volume V=L3

Truncation with External Source

• Source J allows to control symmetry breaking in a finite volume, cf. 1[Kaplan et al. 2003]
2[Wingate et al. 2009]
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Truncation with External Source

• Study flow of potential at T=0 to extract Bertsch parameter and fermion gap

• In a first step we take into account the fermion fluctuations only

∂tU(ρ̄, J, L, µ) = −2k5(B>
F +B<

F )sF sF =
k2�

k4 + h̄2
ϕρ̄

• Truncation:

B>
F =

1

(kL)3

�

�n

θ
�
(kL)2 − (2π)2�n2 + µL2

�
θ
�
(2π)2�n2 − µL2

�
,

B<
F =

1

(kL)3

�

�n

θ
�
(kL)2 + (2π)2�n2 − µL2

�
θ
�
µL2 − (2π)2�n2

�
.

• This corresponds to an approximation on a meanfield level

• Effects from boson fluctuations will be included later in the talk

Γk[Φ] =

�

τ,�x

�
ψ†(∂τ − �∇2 − µ)ψ + φ∗(Zφ∂τ − ∆

2
)φ+ U(ρ, µ)− h (φ∗ψ1ψ2 + φψ∗

2ψ
∗
1)

+
1√
2
J(φ+ φ∗)

�
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Investigation of the Source J
• Truncation:

Γk[Φ] =

�

τ,�x

�
ψ†(∂τ − �∇2 − µ)ψ + φ∗(Zφ∂τ − ∆

2
)φ+ U(ρ, µ)− h (φ∗ψ1ψ2 + φψ∗

2ψ
∗
1)

+
1√
2
J(φ+ φ∗)

�

• Study behaviour of  TD observables with source J for infinite L

• Generally, we can expand Bertsch parameter for small but finite J:

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.05  0.1  0.15  0.2
nJ

• In lattice simulations only data for finite J is 
available → J=0 has to be extraced from fit 
(linear, higher order,...)

• Linear fit justified for 

δξ =
ξJ − ξ0

ξ0

= −2

3
(δnJ) +

5

9
(δnJ)

2 +O
�
(δnJ)

3
�

δnJ =
nJ − nJ=0

nJ=0

δnJ � 0.05
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Investigation of the Source J
• Truncation:

Γk[Φ] =

�

τ,�x

�
ψ†(∂τ − �∇2 − µ)ψ + φ∗(Zφ∂τ − ∆

2
)φ+ U(ρ, µ)− h (φ∗ψ1ψ2 + φψ∗

2ψ
∗
1)

+
1√
2
J(φ+ φ∗)

�

• Study behaviour of  TD observables with source J for infinite L

• Similarly, we can expand fermion gap for small but finite J:

• In lattice simulations only data for finite J is 
available → J=0 has to be extraced from fit 
(linear, higher order,...)

• Linear fit justified for δnJ � 0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25
nJ

δ∆ =
∆J−∆0

∆0
= ∆̂(1)(δnJ) +O((δnJ)

2)

∆̂(1) ≈ 0.749

• fit from MF data
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Finite Volume V=L3

• The (average) particle number N is given by N = n L3 

• Initial condition for RG flow of density is given by free Fermi gas nfree

• nfree is determined by our choice for the chemical potential.

nfree =
s

L3

�

�n,ni∈Z
θ
�
µL2−(2π)2�n 2

� (µL2→∞)−→ µ
3
2

3π2

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6  7  8

N

µL2/(2 )2

Free Fermi Gas
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Bertsch parameter at MF Level
• Study Bertsch parameter as function of N (or µ) for various values of J at fixed L (fixes scale)

• For large values of µ at fixed L and J: dimensionless Jµ-7/4 → 0, so                for large L

• For small N we observe shell effects (discontinuities)

ξ → ξ∞

N > 50 : δξ ∼ cNN
− 2

3 ∼ cµ
�
µL2

0

�−1

• Large-N behaviour follows from definition of Bertsch parameter

• Constants c only depend on JL7/2

• For N>200 (and our choice of L) Bertsch parameter is already close to cont. limit (>98%)

• Convergence behaviour depends on J (very clearly for N<200)
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decreasing source J
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Bertsch parameter at fixed density

 0.9

 0.95

 1

 1.05

 1.1

 5  10  15  20  25  30

(j,
k F

L)
/

kFL

• Behavior of Bertsch parameter as a function of dimensionless quantity kFL for fixed density:

• Small kFL: shell effects
(washed out for larger source)

• Large kFL: TD limit is 
approached 
(as it should for fixed density)

• Finite source J: Does not 
approach J →0 limit 
(due to constant fraction of nJ)

• BMF: Include boson loops in flow of effective potential, running wave-function renormalization

BMFMF
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Fermion Gap beyond MF
• Fermion gap is more sensitive to the inclusion of order- parameter fluctuations

• Large kFL: TD limit is approached

• Different values for different 
densities and sources J

• For large source J: Gap almost 
independent from kFL  
(wavelength of  Goldstone smaller 
than spatial extent L)

→

Order parameter fluctuations are 
not affected by boundary

• Small source J: large deviations

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15
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 5  10  15  20  25  30

(j,
k F

L)
/

kFL

BMFMF

m2
G =

J√
2ρ0

, m2
R = m2

G + λϕρ0

24



Conclusions

• Finite size study of Tc(J,L)

& Outlook

• FRG connects BCS-/BEC-limits continuously with unitary regime and gives results with a 
reasonable accuracy throughout the whole crossover

• Using the FRG we have access to the shape of the volume and the particle number 
dependence of observables over a wide range of system sizes

• Volume-effects depend strongly on observable

• Improves understanding of convergence of finite volume systems, useful for MC 
simulations
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