Finite-size and Particle-number Effects in an Ultracold Fermi Gas at Unitarity

Michael M. Scherer

Institute for Theoretical Solid State Physics, RWTH Aachen

presented at YITP, Kyoto, August 26th 2011

J. Braun, S. Diehl, M. M. Scherer, [arXiv:1108.xxxx]

- I. BCS-BEC Crossover: Basics and Phase diagram
- 2. Overview: FRG Studies of the BCS-BEC Crossover
- 3. Finite System Size Study
- 4. Conclusions & Outlook

I. BCS-BEC Crossover: Basics and Phase diagram

BCS-BEC Crossover: Basics

- Ultracold gases of fermionic atoms (⁶Li, ⁴⁰K) \rightarrow 2 accessible hyperfine spin states
- Spin-balanced case (for strong spin-imbalance, cf. talk by R. Schmidt)

- $(a k_F)^{-1} < -1$: weakly attractive, Cooper pairing \rightarrow below T_c : BCS superfluidity
- $(a k_F)^{-1} > I: two-body bound state, formation of molecules <math>\rightarrow below T_c: interacting BEC$
- $|(a k_F)^{-1}| < I$: strongly correlated regime, Unitarity limit at $(a k_F)^{-1} \rightarrow 0$

BCS-BEC Crossover: Feshbach Resonance

• Feshbach resonance: Vary effective i.a. strength or (a k_F)⁻¹ by external magnetic field

- Feshbach resonance allows to tune i.a. strength arbitrarily in an experiment
- Challenge and testing ground for non-perturbative approaches to strongly interacting QFTs

BCS-BEC Crossover: Universality

- Limit of broad Feshbach resonances (e.g. experiments with ⁶Li and ⁴⁰K)
- TD quantities independent of microscopic details \rightarrow can be expressed by two parameters:

• Units set by density $n = (k_F)^3/(3\pi^2)$

BCS-BEC Crossover: Model

• Microscopic model:

$$S[\psi^{\dagger},\psi] = \int_0^{1/T} d\tau \int d^3x \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu)\psi + \frac{\bar{\lambda}_{\psi}}{2} (\psi^{\dagger}\psi)^2 \right\}$$

- two-component Grassmann field: $\psi = (\psi_1, \psi_2)$
- chemical potential: μ
- natural units: $\hbar = k_B = 2m = 1$
- bare four-fermion coupling: $\bar{\lambda}_{\psi} = \bar{\lambda}_{\psi}(B)$
- Observable thermodynamics from grand canonical partition function:

$$Z_G = \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S[\psi^{\dagger},\psi]}$$

... to be evaluated non-perturbatively!

BCS-BEC Crossover: Phase Diagram

• Critical temperature for the phase transition to superfluidity

2. FRG Studies of the BCS-BEC Crossover

with Stefan Flörchinger, Sebastian Diehl, Holger Gies, Jan Pawlowski and Christof Wetterich

Functional RG and Theory Space

• Continuum formulation in terms of effective action

$$\Gamma[\chi_{eq}] = \Phi_G/T$$
, where $\Phi_G = -T \ln Z$

• Wetterich equation:

$$\partial_k \Gamma_k[\chi] = \frac{1}{2} \operatorname{STr}\left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k \right]$$

Hubbard-Stratonovich Field and Yukawa Coupling)

$$S[\psi^{\dagger},\psi] = \int_0^{1/T} d\tau \int d^3x \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu)\psi + \frac{\bar{\lambda}_{\psi}}{2} (\psi^{\dagger}\psi)^2 \right\}$$

• Introduce a complex scalar by Hubbard-Stratonovich transformation:

Complex scalar: Molecule field, Cooper pairs,...

• s-wave scattering length:

$$a = -\frac{\bar{h}^2}{8\pi\mu_M(B-B_0)}$$

Truncation and Thermodynamic Phases

$$\Gamma_k[\Phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \phi^* (Z_{\phi} \partial_{\tau} - \frac{\vec{\nabla}^2}{2}) \phi + U(\rho,\mu) - h \left(\phi^* \psi_1 \psi_2 + \phi \psi_2^* \psi_1^* \right) \right\}$$

• Effective potential: Expansion around the scale-dependent location of its minimum

$$U_k(\rho,\mu) = m^2(\rho - \rho_0) + \frac{1}{2}\lambda(\rho - \rho_0)^2 + U(\rho_0,\mu_0) - n(\mu - \mu_0) + \alpha(\mu - \mu_0)(\rho - \rho_0)$$

• Classification of the thermodynamic phases of the system:

Symmetric regime :
$$\rho_0 = 0$$
, $m^2 > 0$
Symmetry broken regime : $\rho_0 > 0$, $m^2 = 0$
Phase transition : $\rho_0 = 0$, $m^2 = 0$

BCS-BEC Crossover: Phase Diagram

• Critical temperature for the phase transition to superfluidity:

3. Finite System Size Study

with Jens Braun and Sebastian Diehl

Motivation

- Analysis of data from lattice simulations (performed in a finite volume)
- For unitary Fermi gas: Studies by MC community:
- ¹[Wingate et al. 2009] ²[Kaplan et al. 2010] ³[Forbes et al. 2011]

- Lattice studies:
 - Limited range of system sizes
 - Numerically expensive
 - Cannot investigate transition between finite system and continuum limit
- FRG can! (recall talk by B. Klein)

Unitary regime

Setup for Finite-size Study

- Finite cubic volume V with spatial extent L
- Boundary conditions of fermions in spatial directions are periodic, cf. lattice 1[Bulgac et al. 2006]
- Finite external pairing source J which couples to order-parameter field
- Grand canonical ensemble: Average particle number fixed by chemical potential μ

Universal Quantities

- Investigate unitary regime (a $\rightarrow \infty$) at T=0 and n≠0
- In continuum limit we have the *universal* quantities:

Bertsch parameter:	$\xi = \frac{\mu}{E_F}$
Fermion gap:	$\frac{\Delta}{E_F}$

- In finite volume: Bertsch parameter and fermion gap will depend on L and J
- Study deviation from TD limit as a function of L and J

²[Kaplan et al. 2003]

³[Wingate et al. 2009]

Truncation with External Source

• Truncation:

$$\Gamma_{k}[\Phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger}(\partial_{\tau} - \vec{\nabla}^{2} - \mu)\psi + \phi^{*}(Z_{\phi}\partial_{\tau} - \frac{\Delta}{2})\phi + U(\rho,\mu) - h\left(\phi^{*}\psi_{1}\psi_{2} + \phi\psi_{2}^{*}\psi_{1}^{*}\right) + \frac{1}{\sqrt{2}}J(\phi + \phi^{*}) \right\}$$

• Source J allows to control symmetry breaking in a finite volume, cf. ¹[Kaplan et al. 2003] ²[Wingate et al. 2009]

Finite Volume $V = L^3$

- Go to frequency/momentum space by FT: $(\tau, \vec{x}) \rightarrow (\omega^{(\phi/\psi)}, \vec{q})$
- In a finite volume, we obtain summation over discrete momenta:

$$\omega^{(\phi)} = 2m\pi T, \quad \omega^{(\psi)} = (2m+1)\pi T, \quad \vec{q} = \vec{n}\frac{2\pi}{L}, \quad \vec{n} = (n_1, n_2, n_3), \quad n_i, m \in \mathbb{Z}$$

- Flow equations can be evaluated for different system sizes L
- In the limit (L $\rightarrow \infty$) we recover the well known flow equations for infinite volume

Truncation with External Source

• Truncation:

$$\Gamma_{k}[\Phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger}(\partial_{\tau} - \vec{\nabla}^{2} - \mu)\psi + \phi^{*}(Z_{\phi}\partial_{\tau} - \frac{\Delta}{2})\phi + U(\rho,\mu) - h\left(\phi^{*}\psi_{1}\psi_{2} + \phi\psi_{2}^{*}\psi_{1}^{*}\right) + \frac{1}{\sqrt{2}}J(\phi + \phi^{*}) \right\}$$

- Study flow of potential at T=0 to extract Bertsch parameter and fermion gap
- In a first step we take into account the fermion fluctuations only

$$\begin{aligned} \partial_t U(\bar{\rho}, J, L, \mu) &= -2k^5 (B_{\rm F}^{>} + B_{\rm F}^{<}) s_{\rm F} \end{aligned} \qquad s_{\rm F} = \frac{k^2}{\sqrt{k^4 + \bar{h}_{\varphi}^2 \bar{\rho}}} \\ B_{\rm F}^{>} &= \frac{1}{(kL)^3} \sum_{\vec{n}} \theta \left((kL)^2 - (2\pi)^2 \vec{n}^2 + \mu L^2 \right) \theta \left((2\pi)^2 \vec{n}^2 - \mu L^2 \right) \,, \\ B_{\rm F}^{<} &= \frac{1}{(kL)^3} \sum_{\vec{n}} \theta \left((kL)^2 + (2\pi)^2 \vec{n}^2 - \mu L^2 \right) \theta \left(\mu L^2 - (2\pi)^2 \vec{n}^2 \right) \,. \end{aligned}$$

- This corresponds to an approximation on a meanfield level
- Effects from boson fluctuations will be included later in the talk

Investigation of the Source J

• Truncation:

$$\Gamma_{k}[\Phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger}(\partial_{\tau} - \vec{\nabla}^{2} - \mu)\psi + \phi^{*}(Z_{\phi}\partial_{\tau} - \frac{\Delta}{2})\phi + U(\rho,\mu) - h\left(\phi^{*}\psi_{1}\psi_{2} + \phi\psi_{2}^{*}\psi_{1}^{*}\right) + \frac{1}{\sqrt{2}}J(\phi + \phi^{*}) \right\}$$

- Study behaviour of TD observables with source J for infinite L
- Generally, we can expand Bertsch parameter for small but finite J:

$$\delta \xi = \frac{\xi_J - \xi_0}{\xi_0}$$
$$= -\frac{2}{3}(\delta n_J) + \frac{5}{9}(\delta n_J)^2 + \mathcal{O}\left((\delta n_J)^3\right)$$
$$\delta n_J = \frac{n_J - n_{J=0}}{n_{J=0}}$$

- In lattice simulations only data for finite J is available → J=0 has to be extraced from fit (linear, higher order,...)
- Linear fit justified for $\delta n_J \lesssim 0.05$

Investigation of the Source J

• Truncation:

$$\Gamma_{k}[\Phi] = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger}(\partial_{\tau} - \vec{\nabla}^{2} - \mu)\psi + \phi^{*}(Z_{\phi}\partial_{\tau} - \frac{\Delta}{2})\phi + U(\rho,\mu) - h\left(\phi^{*}\psi_{1}\psi_{2} + \phi\psi_{2}^{*}\psi_{1}^{*}\right) + \frac{1}{\sqrt{2}}J(\phi + \phi^{*})\right\}$$

- Study behaviour of TD observables with source J for infinite L
- Similarly, we can expand fermion gap for small but finite J:

$$\delta \Delta = \frac{\Delta_J - \Delta_0}{\Delta_0} = \hat{\Delta}^{(1)} (\delta n_J) + \mathcal{O}((\delta n_J)^2)$$
$$\hat{\Delta}^{(1)} \approx 0.749$$
• fit from MF data

- In lattice simulations only data for finite J is available → J=0 has to be extraced from fit (linear, higher order,...)
- Linear fit justified for $\delta n_J \lesssim 0.05$

Finite Volume V=L³

- The (average) particle number N is given by $N = n L^3$
- Initial condition for RG flow of density is given by free Fermi gas n_{free}
- n_{free} is determined by our choice for the chemical potential.

$$n_{\rm free} = \frac{s}{L^3} \sum_{\vec{n}, n_i \in \mathbb{Z}} \theta \left(\mu L^2 - (2\pi)^2 \vec{n}^2 \right) \xrightarrow{(\mu L^2 \to \infty)} \frac{\mu^{\frac{3}{2}}}{3\pi^2}$$

Bertsch parameter at MF Level

- Study Bertsch parameter as function of N (or μ) for various values of J at fixed L (fixes scale)
- For large values of μ at fixed L and J: dimensionless J $\mu^{-7/4} \rightarrow 0$, so $\xi \rightarrow \xi_{\infty}$ for large L
- For small N we observe shell effects (discontinuities)

- Large-N behaviour follows from definition of Bertsch parameter
- Constants c only depend on JL^{7/2}
- For N>200 (and our choice of L) Bertsch parameter is already close to cont. limit (>98%)
- Convergence behaviour depends on J (very clearly for N<200)

Bertsch parameter at fixed density

• Behavior of Bertsch parameter as a function of dimensionless quantity k_FL for fixed density:

ξ(j,k_FL)/ξ_α

- Small k_FL: shell effects (washed out for larger source)
- Large k_FL:TD limit is approached (as it should for fixed density)
- Finite source J: Does not approach J →0 limit (due to constant fraction of n_J)

• BMF: Include boson loops in flow of effective potential, running wave-function renormalization

Fermion Gap beyond MF

• Fermion gap is more sensitive to the inclusion of order- parameter fluctuations

 $\Delta(j,k_FL)/\Delta_{\infty}$

- Large *k_FL*:TD limit is approached
- Different values for different densities and sources J
- For large source J: Gap almost independent from k_FL (wavelength of Goldstone smaller than spatial extent L)

Order parameter fluctuations are not affected by boundary

• Small source J: large deviations

$$m_{\rm G}^2 = \frac{J}{\sqrt{2\rho_0}}, \qquad m_{\rm R}^2 = m_{\rm G}^2 + \lambda_{\varphi}\rho_0$$

Conclusions

- FRG connects BCS-/BEC-limits continuously with unitary regime and gives results with a reasonable accuracy throughout the whole crossover
- Using the FRG we have access to the shape of the volume and the particle number dependence of observables over a wide range of system sizes
- Volume-effects depend strongly on observable
- Improves understanding of convergence of finite volume systems, useful for MC simulations

& Outlook

• Finite size study of T_c(J,L)