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RG:  ‘microscope‘ with varying resolution of length scale

Fixed point: physics looks the same for ‘all‘ resolutions, i.e. becomes

independent of k (in rescaled units)

Renormalization group fixed points

Typically not for all resolutions: 

• IR fixed point for k  0 • UV fixed point for k  ‘‘

Denote coarse graining length as inverse characteristic momentum scale

~ 1/k



a) Thermal equilibrium IR fixed points

Examples in and out of equilibrium

… IR fixed points associated to diverging time scales in thermalization process

Important candidate: stationary transport of conserved charges

… associated to second-order phase transitions:

T > Tc

T < Tc

T = Tc

order para-

meter 

effective potential

(p)  1/p2-

(p)  pz

power-law exponents

• : anomalous dimension

• z: dynamical exponent

b) Far from equilibrium IR fixed points

• : occupation number exponent



Thermalization process in quantum many-body systems, schematically:   

• Characteristic nonequilibrium time scales? Relaxation? Instabilities?    

• Diverging time scales? E.g. associated to

Digression: diverging time scales

- critical slowing down near second-order phase transitions, or

- far from equilibrium IR scaling solutions?  nonthermal fixed points



Experimental example: 

Modulation instability and

capillary wave turbulence
Instability leads to breaking of waves

& weak Kolmogorov wave turbulence

Energy injection limited by droplet formation!

Xia, Shats, Punzmann, EPL91 (2010) 14002 
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Digression: weak wave turbulence

momentum conservation energy conservation

“gain“ term “loss“ term

E.g. Boltzmann equation for number conserving 22 scattering

2  1

Solutions 2 and 3 are limited to the “window“ 1/  n(p)  1, since for

n(p)  1/ the nm scatterings for n,m=1,.., are as important as 22 

has different stationary solutions in the (classical) regime n(p)  1:

1. n(p) = 1/(e(p) – 1)

2. n(p)  1/p4/3

3. n(p)  1/p5/3

thermal equilibrium

turbulent particle cascade

energy cascade

Kolmogorov, Proc. 

USSR Acad. Sci., 

30 (1941) 299



Weak vs. strong wave turbulence

Log n(p)

1

1/

n(p)  1/ 1/  n(p)  1 n(p)  1

quantum

(dissipative) 

regime

Kolmogorov

weak wave

turbulence

nonthermal

fixed point

Log p

 1/p4/3 , 1/p5/3
 e-p 1/p

Predicted scaling exponents for nonperturbative regime:

a)  n(p)  1/p4

b)  n(p)  1/p5

strong turbulence particle cascade

energy cascade

Berges, Rothkopf, Schmidt, 

PRL 101 (2008) 041603

Experimental verification requires sufficient energy injection!



Experimental candidates for nonperturbatively large densities

1) Relativistic heavy-ion collisions explore strong interaction matter

starting from a transient nonequilibrium state

CGC: Energy density of gluons with typical momentum Qs (at time 1/Qs)

Schmelling, hep-ex/9701002 

nonperturbative!i.e. occupation numbers

 see also last week‘s talks, this conference (jointly with TFT workshop)



2) Early universe at the end of inflation

• Energy density of matter ( a-3) and radiation ( a-4) dilutes by expansion

 energy at the end of inflation stored in homogeneous field with amplitude

, schematic evolution: 

nonperturbatively large in quartic self-coupling   10 -12 !

i.e. after preheating



3) Ultracold quantum gases

• mg/4 determined by s-wave scattering length

• diluteness condition:

• nonperturbatively large occupation number of momentum mode p if

NIST

...atoms at nanokelvins

 see also talk by Boris Nowak, this conference



Universality far from equilibrium

Nonequilibrium instabilities  

Nonthermal fixed points   

Berges, Rothkopf, Schmidt ‘08; Berges, Hoffmeister ‘09; Scheppach, Berges, Gasenzer ‘10; 

Carrington, Rebhan ‘10; Nowak, Sexty, Gasenzer ’11; Berges, Sexty ’11; … 

Very different microscopic dynamics (instabilities) can lead to same

macroscopic scaling phenomena for bosons (strong turbulence)

Early-universe (p)reheating

after inflation (~1016 GeV)

Heavy-ion collisions

(~100 MeV) Cold quantum gas dynamics

(~10-13 eV)

NISTWMAP



Nonperturbative functional descriptions

1.Two-particle

irreducible expansions

2PI-1/N to NLO:   ( (aa)2 )

2. Functional

renormalization group

k

k

Berges ´02; Aarts, Ahrensmeier,

Baier, Berges, Serreau ´02

Luttinger, Ward ´60; Baym ´62; 

Cornwall, Jackiw, Tomboulis ´74,…

Wetterich ‘93

Canet, Delamotte, Deloubriere, 

Wschebor ’04; Mitra, Takei, Kim, 

Millis ’06; Gezzi, Pruschke, Meden

’07; Jacobs, Meden, Schoeller ’07; 

Gasenzer, Pawlowski ’08; Berges, 

Hoffmeister ’09; Kloss, Kopietz ’10;…

 Real-time functional

renormalization group

+ 3. classical lattice simulations



universal scaling exponent

• Reheating dynamics after chaotic inflation

Berges, Rothkopf, Schmidt, 

PRL 101 (2008)  041603

O
cc

u
p
at

io
n

n
u
m

b
er

Inflation

Quantum
fluctuations

WMAP Science Team

Strong turbulence:

• Superfluid turbulence in a cold Bose gas

Nowak, Sexty, Gasenzer, 
PRB84 (2011) 020506(R) 

Tangled
vortex lines

2-dim case

nonthermal fixed point

(strong turbulence)

weak wave

turbulence



Nonthermal fixed points as quantum amplifier

Berges, Gelfand, Pruschke, PRL 107 (2011) 061301

• Fermions: n(p)  1 (Pauli principle)  

~ 1/g2

~ O(1)gg

 no classical-statistical approximation

 dramatic enhancement of genuine quantum effects 

if coupled to nonperturbatively occupied bosons! 

Requires real-time lattice simulations with dynamical fermions in QCD!

E.g. dressed fermion self-energy correction in QCD:

All fermion quantum corrections ’saturate’ parametrically to order one!

 test claims with simpler model, where 2PI as well as lattice works



Model

• generic interaction of Yukawa type for Nf massless Dirac fermions:    

 couples left- and right-handed components

i.e. acting like a mass term for     0

• we consider Nf = 2 with symmetry group

 N=4 component linear -model with quartic self-interaction


g



Bosonic sector (g = 0)

  = 4 for d = 3,

 = 5 for d = 4

n(t,p)  p- with

parametric

resonance approach to turbulence:

for z = 1 (relativistic),  = 0

d = 3


d = 4

IR
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Berges, Rothkopf, Schmidt, PRL 101 (2008) 041603, 

Berges, Hoffmeister, NPB 813 (2009) 383, 

Berges, Sexty, PRD 83 (2011) 085004 



Accurate nonperturbative description by quantum 2PI-1/N to NLO

p

Practically no bosonic quantum corrections at the end of instability

Comparing classical to quantum (g=0) 
E

q
u
a
l-
ti
m

e
 t
w

o
-p

o
in

t
c
o
rr

e
la

to
r



Fermions: failure of semi-classical approach

LO:

2PI-NLO:
Boson

Fermion

small self-coupling  leads
to large corrections!

m = 0

+

Baacke, Heitmann, Pätzold, PRD 58 (1998) 125013; Greene, Kofman, PLB 448 (1999) 6; 

Giudice, Peloso, Riotto, Tkachev, JHEP 9908 (1999) 014; Garcia-Bellido, Mollerach, Roulet, 

JHEP 0002 (2000) 034; …

Parametric resonance
preheating

  g2

Berges, Gelfand, Pruschke, PRL 107 (2011) 061301 

t



Occupation number distributions

Bosons still far from equilibrium

1/p4

Bosons

Fermions

IR fermions thermally occupied
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Nonequilibrium fermion spectral function

vector components

scalar component

quantum field anti-commutation relation:

Wigner transform:     ( X
0

= (t + t‘)/2 )

massless fermions

‘heavy‘ fermions



Consider general class of models including lattice gauge theories

with covariant coupling to fermions:

Lattice simulations with dynamical fermions



For classical (x) the exact equation for the fermion D(x,y) reads:

Very costly (4 4 N3 N3)! Use low-cost fermions of Borsanyi & Hindmarsh!

PRD 79 (2009) 065010 Aarts, Smit, NPB 555 (1999) 355



Real-time dynamical fermions in 3+1 dimensions!

Berges, Gelfand, Pruschke, PRL 107 (2011) 061301 

• Very good agreement with NLO quantum result (2PI) for   1

(differences at larger p depend on Wilson term  larger lattices)

• Wilson fermions on a 643 lattice

• Lattice simulation can be applied to  ~ 1  SU(N) gauge theory



• comparison of  = g2/ = 0.1 and  = 1 (relevant for QCD)

Preliminary results for  = 1

log-log plot this time!

 substantially enhanced fermion production with early approach

to Fermi-Dirac distribution in wide momentum range!

with Gelfand, Sexty, in preparation



Conclusions

• nonthermal fixed points provide powerful classification for

universal far from equilibrium properties of theories

• heavy ion collisions, cold quantum gases (and maybe early universe

via gravity waves) are promising candidates to discover them

• they show strongly enhanced fluctuations as compared to

thermal equilibrium (e.g. 1/p4 as compared to thermal 1/p)

• genuine quantum effects for fermions are dramatically amplified

in the presence of nonthermal fixed points for bosons



nonthermal fixed point

thermal equilibrium

t

n(t,p)  et

n(t,p)  p-

nBE

initial

conditions
n(t=0,p)

nonequilibrium

instabilities

• critical slowing down can substantially delay thermalization

• properties independent of details of the underlying microscopic theory

• approached from substantial class of initial conditions (no fine tuning!)

Nonthermal fixed points: 

• strongly coupled (1) fermions required to speed-up thermalization of bosons

Fermions: 

• dramatically enhanced fermion production from quantum corrections

(thermally occupied in the IR while bosons are still far from equilibrium)


