Hadron production at chemical freeze-out and the QCD phase diagram from high-energy nucleus-nucleus collisions

A.Andronic – GSI Darmstadt

- The thermal model in heavy-ion collisions
- Relevance for the QCD phase diagram
 [fits of abundances of light quark (u,d,s) hadrons]
- Charmonium in the statistical hadronization model
- Summary and outlook
- AA, P. Braun-Munzinger, J. Stachel, PLB 673 (2009) 142

AA, P. Braun-Munzinger, K. Redlich, J. Stachel, PLB 678 (2009) 350

- lots of particles, mostly newly created ($m = E/c^2$)
- a great variety of species:

 π^{\pm} ($u\bar{d}$, $d\bar{u}$), m=140 MeV K^{\pm} ($u\bar{s}$, $\bar{u}s$), m=494 MeV p (uud), m=938 MeV Λ (uds), m=1116 MeV also: $\Xi(dss)$, $\Omega(sss)$...

mass hierarchy in production

 (u, d quarks: remnants from
 the incoming nuclei)

grand canonical partition function for specie i ($\hbar = c = 1$):

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln[1 \pm \exp(-(E_{i} - \mu_{i})/T)]$$

 $g_i = (2J_i + 1)$ spin degeneracy factor; T temperature; $E_i = \sqrt{p^2 + m_i^2}$ total energy; (+) for fermions (-) for bosons $\mu_i = \mu_b B_i + \mu_{I_3} I_{3i} + \mu_S S_i + \mu_C C_i$ chemical potentials

 μ ensure conservation (on average) of quantum numbers: i) baryon number: $V \sum_{i} n_i B_i = N_B$

ii) isospin: $V \sum_{i} n_i I_{3i} = I_3^{tot}$ iii) strangeness: $V \sum_{i} n_i S_i = 0$ iv) charm: $V \sum_{i} n_i C_i = 0$.

Widths of resonances taken into account

Short-range repulsive core modelled via excluded volume correction (Rischke) (leads to an overall 10-20% decrease of densities; no effect on T)

... is in a way the simplest model

the analysis of hadron yields within the thermal model provides a "snapshot" of AA collision at chemical freeze-out (the earliest in the collision timeline we can look with hadronic observables)

...but the devil is in the details ...one needs:

- a complete hadron spectrum
- canonical approach at low energies (and smaller systems)
- to understand the data well (control fractions from weak decays)

Particle Data Group, Phys. Lett. B 667 (2008) 1

relative increase of calculated densities with mass spectrum 2008/2005 \downarrow

vacuum masses

...a non-thermal fit parameter, to check possible non-thermal production of strangeness

for a hadron carrying "absolute" strangeness $s = |S - \bar{S}|: n_i \rightarrow n_i \gamma_s^s$ Examples: K^{\pm} ($u\bar{s}$, $\bar{u}s$): $n_K \gamma_s$, Λ (uds): $n_\Lambda \gamma_s$, $\Xi(dss): n_\Xi \gamma_s^2$, $\Omega(sss): n_\Omega \gamma_s^3$, $\phi(s\bar{s}): n_\phi \gamma_s^2$

in principle, usage of γ_S is to be avoided if one tests the basic thermal model

even as some models employ it ($\Rightarrow \gamma_s = 0.6 - 0.8$), all agree that it is not needed at RHIC energies (for central collisions)

here (central AA collisions) we fix $\gamma_s=1$

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \frac{1}{N_{BW}} \int_{M_{thr}}^{\infty} dm \int_{0}^{\infty} \frac{\Gamma_{i}^{2}}{(m-m_{i})^{2} + \Gamma_{i}^{2}/4} \cdot \frac{p^{2}dp}{\exp[(E_{i}^{m} - \mu_{i})/T] \pm 1}$$

Minimize: $\chi^{2} = \sum_{i} \frac{(N_{i}^{exp} - N_{i}^{therm})^{2}}{\sigma_{i}^{2}}$

 N_{i} : hadron yield ($\Rightarrow T, \mu_{b}, V$) or yield ratio (no V)

Data: 4π or dN/dy (at y=0)

fit only STAR data: $T=162$ MeV, $\mu_{b}=24$ MeV, $V=2400$

fm³, $\chi^{2}/N_{df}=10.9/12$

 $\mu_{I_{3}}=-0.8$ MeV; $\mu_{S}=6.6$ MeV; $\mu_{C}=-3.5$ MeV

 $m^{2}KK K p p A X E E^{4} \Omega \phi \phi d d K \times \Sigma^{4} A^{*}He^{he}$

The hadron abundances are in agreement with a thermally equilibrated system

Energy dependence of T, μ_b

thermal fits exhibit a limiting temperature: $T_{lim} = 164 \pm 4 \text{ MeV}$ $T = T_{lim} \frac{1}{1 + \exp(2.60 - \ln(\sqrt{s_{NN}(\text{GeV})})/0.45)}, \quad \mu_b[\text{MeV}] = \frac{1303}{1 + 0.286\sqrt{s_{NN}(\text{GeV})}}$

Energy dependence of the thermal parameters

- ...a comparison of models
 - Becattini et al.: $+\gamma_S$ Phys. Rev. C 73 (2006) 044905 Phys. Rev. C 78 (2008) 054901
 - Rafelski et al.: $+\gamma_{S,q}$, λ_{q,S,I_3} Eur. Phys. J. A 35 (2008) 221 γ_S =0.18,0.36,1.72,1.64,... γ_q =0.33,0.48,1.74,1.49,1.39,1.47...
 - Dumitru et al.: inhomogeneous freeze-out $(\delta T, \delta \mu_B)$ Phys. Rev. C 73 (2006) 024902
 - Kaneta, Xu, nucl-th/0405068
 - Cleymans et al., Phys. Rev. C 57 (1998) 3319

Volume in central collisions

 $V_{chem}(\Delta y = 1) = \mathrm{d}N_{ch}/\mathrm{d}y|_{y=0}/n_{ch}^{therm}$

 $V_{HBT} = (2\pi)^{3/2} R_{side}^2 R_{long}$...data from ALICE, PLB 696, 328 (2011)

General features of (relative) hadron production

good agreement data-model ...but not free of some "tensions", NB: p/π @LHC

 p,\bar{p} data of STAR (62, 130, 200 GeV) ad-hoc "corrected" by -25% for feed-down

A.Andronic@GSI.de

Acta Phys. Pol. 40 (2009) 1005

STAR, Science 328 (2010) 58.

Ratio	Exp. (STAR)	Model
$^{3}\bar{He}/^{3}He$	$0.45{\pm}0.02{\pm}0.04$	$0.42{\pm}0.03$
${}^3_{ar{\Lambda}}ar{H}/{}^3_{\Lambda}H$	$0.49{\pm}0.18{\pm}0.07$	$0.45 {\pm} 0.03$
${}^{\overline{3}}_{\Lambda}H/{}^{3}He$	$0.82{\pm}0.16{\pm}0.12$	$0.35{\pm}0.003$
${}^3_{ar{\Lambda}}ar{H}/{}^3ar{He}$	$0.89{\pm}0.28{\pm}0.13$	$0.37{\pm}0.003$

RHIC ($\sqrt{s_{NN}}$ =200 GeV): T=164 MeV, $\mu_b = 24 \pm 2$ MeV

...discrepancy for ${}^3_{\Lambda}H/{}^3He$?

could be resolved if an excited state of ${}^3_\Lambda H$ exists

Phys.Lett.B697,203(2011)

The phase diagram of QCD 1

is chemical freeze-out a determination of the phase boundary? if yes, how is thermalization achieved?

• for low μ_b (<~300 MeV): driven by the deconfinement transition

PBM, Stachel, Wetterich, PLB 596 (2004) 61

• for high μ_b :

is the quarkyonic phase transition the "thermalizer"? McLerran, Pisarski, NPA 796 (2007) 83 AA et al., NPA 837 (2010) 65

result predicted/confirmed by (RG) QCD approach; B.J. Schaefer, this meeting J.Pawlowski private comm.

- need to go beyond Dashen, Ma and Bernstein (dilute limit) when densities large enough (even below T_c)
- it is not only a "technical" correction (thermodynamic consistency fulfilled, free of acausal behavior) reference for Lattice QCD (for $T < T_c$) B-W: arXiv:1011.4229
 - A. Bazavov et al., PRD 80 (2009) 014504
 - M. Cheng et al., PRD 81 (2010) 054504
- NB: T_c is not $T_{Hagedorn}$...but rather $T_c \simeq T_{lim}$
 - $...T_{Hagedorn}$ is no more

The end?

...not quite... we need something more we need to look at hadrons for which the statistical model doesn't work in elementary (pp and e^+e^-) collisions

...because it works (albeit less well and with extra parameters than in AA) for the large majority of hadrons (and gives similar T)

 e^+e^- collisions (LEP) \longrightarrow

V - volume of 1 jet mix of $q\bar{q}$ jets (EW) from data

(full canonical calc.)

PLB 675 (2009) 312, 678 (2009) 350

P.Braun-Munzinger, J.Stachel, PLB 490 (2000) 196

- all charm quarks are produced in primary hard collisions ($t_{c\bar{c}} \sim 1/2m_c \simeq 0.1 \text{ fm/c}$)
- survive and thermalize in QGP (thermal, but not chemical equilibrium)
- charmed hadrons are formed at chemical freeze-out together with all hadrons statistical laws, quantum no. conservation; stat. hadronization ≠ coalescence is freeze-out at(/the?) phase boundary? ...we believe yes
- focus on J/ψ : ...can it survive above T_c ? ...not settled yet (LQCD)

Asakawa, Hatsuda, PRL 92 (2004) 012001; Mocsy, Petreczky, PRL 99 (2007) 211602

we assume no J/ ψ survival in QGP (full screening) in our model the full yield is from generation at the phase boundary

if this supported by data, ${\rm J}/\psi$ looses status as "thermometer" of QGP ...and gains status as a powerful observable for the phase boundary

Statistical hadronization of charm: method and inputs

• Thermal model calculation (grand canonical) $T, \mu_B: \rightarrow n_X^{th}$

•
$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$$

• $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c \text{ (charm fugacity)}$$

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0$ $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$ Inputs: T, μ_B , $V_{\Delta y=1} (= (dN_{ch}^{exp}/dy)/n_{ch}^{th})$, $N_{c\bar{c}}^{dir}$ (pQCD or exp.) Minimal volume for QGP: V_{QGP}^{min} =400 fm³

J/ψ production: the ultimate test at the LHC

i) less generation (more suppr.) at forward rapidity; ii) less suppression at LHC

"generic" predictions validated by data (despite uncertainty of $\sigma_{c\bar{c}}$ input, part of uncertainty due to shadowing) arXiv:1106.6321 the thermal model provides one clear way to obtain "experimental" ("minimal-theory bias") points on the QCD phase diagram (with fits of hadron yields; higher moments to follow)

- thermal fits work remarkably well (AGS-RHIC) \Rightarrow (T, μ_b, V)
- limiting temperature \Rightarrow phase boundary $(T_{lim} \simeq T_c)$ \rightarrow for the skeptics... LHC case decissive ...smaller exp. errors expected ...would we be able (do we need?) to constrain also δT ?
- indications (bad fits) around the critical point? ...maybe, at SPS... ...but not a strong case due to disagreements between experiments \rightarrow RHIC low-energy run (and CBM?) will clarify this <u>Needed:</u> a better freeze-out line (or phase boundary?) for $\mu_b >$ 500 MeV
- \bullet Good agreement with J/ ψ (and $\psi')$ data ...is scrutinized further

A.Andronic@GSI.de

RG Workshop - Kyoto, 29.08-02.09, 2011

Backup slides

needed whenever the abundance of hadrons with a given quantum number is very small ...so that one needs to enforce exact QN conservation in AA collisions: strangeness at low energies au^{10^2}

$$\begin{split} n_{i,S}^C &= n_{i,S}^{GC} \cdot \frac{I_s(N_S)}{I_0(N_S)} \\ N_S &= V \cdot \sum S \cdot n_{i,S}, \\ \text{total amount of strangeness-carrying} \\ \text{hadrons (part.+antipart.)} \end{split}$$

$$\begin{split} n_{K,\Lambda}^C &= n_{K,\Lambda}^{GC} \cdot \frac{I_1(N_S)}{I_0(N_S)} \text{,} \\ n_{\phi}^C &= n_{\phi}^{GC} \end{split}$$

...negligible for $\sqrt{s_{NN}}$ >5 GeV

A.Andronic@GSI.de

... is not always well controlled in measurements

AGS, 2-8 AGeV: a rather small set of hadron yields measured

Fits at SPS: 30 and 158 GeV

only NA49 data: T=148 MeV, $\mu_b=215$ MeV, V=1660 fm³, $\chi^2/N_{df}=36/10$ only NA44+NA57: T=172 MeV, $\mu_b=245$ MeV, V=700 fm³, $\chi^2/N_{df}=30/10$

rather well explained by the model

...as due to detailed features of the hadron mass spectrum ...which leads to a limiting temperature ("Hagedorn", $T < T_H$) ...and contains the QCD phase transition

the horn's sensitivity to the phase boundary is determined (via strangeness neutrality condition) by the Λ abundance (determined by both T and μ_b)

PLB 673 (2009) 142

Thermodynamical quantities at chemical freeze-out

...follow T dependence on $\sqrt{s_{NN}}$

Karsch & Petronzio, PLB 193 (1987) 105, Blaizot & Ollitrault, PRD 39 (1989) 232

- QGP formation time, t_{QGP}
 - SPS (FAIR): $t_{QGP} \simeq 1 \; {
 m fm/c} \sim t_{J/\psi}$
 - RHIC, LHC: $t_{QGP} \lesssim$ 0.1 fm/c $\sim t_{car{c}}$

survival of initially-produced J/ψ at SPS/FAIR energies? ($T_d \sim T_c$)

- collision time, $t_{coll} = 2R/\gamma_{cm}$
 - SPS (FAIR): $t_{coll} \gtrsim t_{J/\psi}$ - RHIC: $t_{coll} < t_{J/\psi}$, LHC: $t_{coll} << t_{J/\psi}$

cold nuclear suppression (breakup by initial nucleons) important at SPS/FAIR energies but not at RHIC and LHC shadowing is yet another (cold nuclear) effect - important at LHC (RHIC?) NB: the only way to distinguish: measure $\sigma_{c\bar{c}}$ in pA and AA

model describes data with PHENIX $\sigma_{c\bar{c}}$ (lower error plotted) J. Phys. G 35 (2008) 104155

- ...the most "solid" observable ...with similar features as R_{AA}
- similar values at RHIC and SPS
 ...with differences in fine details
 ...determined by canonical suppression of open charm
- enhancement-like at LHC
 can. suppr. lifted, quadratic term
 dominant

solid expectations for LHC

...providing we know well (from measurements) the charm production cross section in Pb-Pb

agreement that (re)generation is the game at LHC?

Liu, Qu, Xu, Zhuang, arXiv:0907.2723 Song, Park, Lee, arXiv:1002.1884

"2-component" (kinetic, coalescence) models

...as Grandchamp, Rapp, PLB 523 (2001) 60, NPA 709 (2002) 415