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Problem: Traditional ‘““‘hard” NN interactions
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300 T T T

1 ]
S, channel | k' _k’

200

repulsive
100 L core

Vc (r) [MEV]

Bonn
Reid93
-100 AV18

0 0.5 1 1.5 2 2.5

* constructed to fit low-energy scattering data
* “hard” NN interactions contain repulsive core at small relative distance
* strong coupling between low and high-momentum components

—> nuclear many-body problem non-perturbative, hard to solve!

4 )
Claim:
Problems due to high resolution from interaction!
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Resolution dependence of nuclear forces

Effective theory for NN, 3N, many-N interactions:

QCD — | D , ,
H(A) =T+ Vnn(A) + VaN(A) + Van(A) + ...

A > Achiral

quarks+gluons/partons: () > m

Achiral
typical momenta in nuclei: Q) ~ m,

chiral EFT: nucleons interacting via pion exchanges and
short-range contact interactions

Apionless rf
large scattering length physics: () < mg ®9LI
pionless EFT: unitary regime, - A ﬁ

non-universal corrections



Basic concepts of chiral effective field theory

NN 3N
* choose effective degrees of : :
freedom: here nucleons and pions LO O (%) -
* short-range physics captured in
few short-range couplings - '
NLO 0(%}) c | J—
e separation of scales: Q << A, I ‘ I

breakdown scale A,~500 MeV

®* power-counting:
expand in powers Q/A\,

e systematic: work to desired SBTE B (Q_> d 4
A J \1 .

accuracy, obtain error estimates




Leading order chiral 3N forces ]
LO O(%) = ==
long (21)  intermediate (1)  short-range
®--<r—-9 ---9

C1, €3, C4 terms c¢p term cg term )

* large uncertainties in 27 coupling
constants at present:

o +0.2 | _ +1.5 N +0.5
(,] —_ —'0-9_0.5 ) ('3 - _4'7_].() p) (’4 - 3'5—0.2)

leads to theoretical uncertainties in
many-body observables

-2 . £L % ¢ B [ .
N°LO O (\) | * cp and ce have to be determined

in A>3 systems



Changing the resolution:
The (Similarity) Renormalization Group

* goal: generate unitary transformation of “hard” Hamiltonian

H, = UAHU;L\ with the resolution parameter A\

. dH
* change resolution in small steps: —=~

* transformed wave functions and operators

Pa) =Uxl)  Ox=UOU! = (¥

e specifying 1) by generator G: 1\ = |G, H)|
k

— H
\ [TD\) >\]

O |Y) = (x| Ox |¥x)




Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':

% =8.0 fm’! 1

0.5

-0.5




Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':
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Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G = T':

h=2.0fm .
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Changing the resolution:
The (Similarity) Renormalization Group

K (fm )

4 I
' 4 -0.5

* elimination of coupling between low- and high momentum components,
calculations much easier

* observables unaffected by resolution change (for exact calculations)

* residual resolution dependences can be used as tool to test calculations

-

\_

Not the full story:
RG transformation also changes three-body (and higher-body) interactions!

~

J




Why are there 3N forces!?

Classical analog

Tidal effects lead to 3N forces in earth-sun-moon system:

arst Cuarter

from =nn

& ™. Tidal bulge

* force between earth and moon depends on the position of sun

¢ tidal deformations are internal excitations

* nucleons are composite particles, can also be excited

* change of resolution changes the excitations that can be

described explicitly —— change of 3N force

¢ three-nucleon forces are crucial at low resolution!



Equation of state: Many-body perturbation theory
central quantity of interest: energy per particle £/N

H()\) =T + VNN(A) -+ VgN()\) -+ ...

b= O kinetic energy

+ @@:} + V:) Hartree-Fock

i + @g : @ : @) ¥ @)D 2nd-order

3rd-order
ERE and beyond

* “hard” interactions require non-perturbative summation of diagrams
* with low-momentum interactions much more perturbative
* inclusion of 3N interaction contributions!

* use chiral interactions as initial input for RG evolution



Energy/nucleon [MeV]

Equation of state of pure neutron matter
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significantly reduced cutoff dependence at 2nd order perturbation theory
small resolution dependence indicates converged calculation
energy sensitive to uncertainties in 3N interaction

variation due to 3N input uncertainty much larger than resolution dependence



Energy/nucleon [MeV]

Equation of state of pure neutron matter
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significantly reduced cutoff dependence at 2nd order perturbation theory
small resolution dependence indicates converged calculation

energy sensitive to uncertainties in 3N interaction

variation due to 3N input uncertainty much larger than resolution dependence

good agreement with other approaches (different NN interactions)



Neutron matter:
Symmetry energy

K
E(p,a=1) = —ay A 185(2) (0 = po)* + S2(p)
S2(p) = as + 9 (p — po)
Po
c1 |GeV] c3 |GeV] ay [MeV] po [MeV fm ™
—0.81 —3.2 31.7 2.4/2.5
~0.81 —5.7 33.7 2.9/3.0
—0.7 —3.2 31.7 2.4/2.5
1.4 —5.7 34.5 3.3/3.4

* uncertainties in C; couplings lead to uncertainties in symmetry energy

e given the experimental constraint a4 = 30 =4 MeV
smaller absolute values of C3 seem to be preferred from our results




Constraints on the nuclear equation of state (EOS)

nature
A two-solar-mass neutron star measured using
Shapiro delay

P. B. Demorest!, T. Pennucci?, S. M. Ransom!, M. S. E. Roberts® & J. W. T. Hessels*®

30

Timing residual (us)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Orbital phase (turns)

Demorest et al., Nature 467, 1081 (2010)

Myax = 1.65Mg — 1.97 + 0.04 M,

Structure of a neutron star is determined by
Tolman-Oppenheimer-Volkov (TOV) equation:

ec? c2r

P _ GMe[  PI[ , 4wr®P)[  2GM -
dr 12 M c?

crucial ingredient: energy density ¢ = ¢(P)

Credit: NASA/Dana Berry

-— ions, electrons

-4—— electrons, neutrons, nucleii

neutron-proton Fermi liquid
few % electron Fermi gas

quark gluon plasma?



Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities.
Radius of a typical NS (M~1.4 M) theoretically not well constrained.

Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter —— neutron star matter

parametrize piecewise
high-density extensions of EOS:

* use polytropic ansatz
T
p~p
* range of parameters

I'1, p12, 12
limited by physics!

~N

log,,P [dyne/cm®]

37

36

35

13.0

I
—— crust EOS

B ncutron star matter
with ¢, uncertainties

13.5 14 .0
log,,p [g/cm’]

KH et al., PRL 105, 161102 (2010)



3.0

Neutron star radius
constraints
2.5 |
4 ) A
use the constraints:
2.0 b
recent NS observation MmaXT
f_1® .........................................................................................
= [ =35
T =45
causality Lo T el
- T,=35
vs(p) = \/dP/de < c T To=ds
P=P
\_ Y, 05~ e p=p,=1.5p,
A p=p,=2.5p,
¢ p=p;,=3.5p,
—p., =45
KH etal,PRL 105,161102 (2010) L M i Ao
6 7 8 9 10 11 12 13 14 15

R [km]

* low-density part of EOS sets scale for allowed high-density extensions

e radius constraint after incorporating crust corrections: 10.5 — 13.5 km



Gravitational wave signals
from neutron star binary mergers
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* high-density part of nuclear EOS only loosely constrained

* simulations of NS binary mergers show strong correlation between between
Jpeak of the GW spectrum and R, of the corresponding EOS

* measuring fpeak is key step for constraining chiral EOS systematically at large p
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Equation of state of symmetric nuclear matter,

nuclear saturation

| “Very soft potentials must be

excluded because they do not
give saturation;

they give too much binding and
too high density. In particular, a
substantial tensor force is
required.”

Hans Bethe (1971)

k. [fm™]
KH et al, PRC(R) 83,031301 (2011

empirical nuclear
saturation properties

ne ~ 0.16 fm~°

Ebinding/N ~ —16 MeV

¢ ~1.81m




Equation of state of symmetric nuclear matter,
Nuclear saturation
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* nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions

e 3N forces are essential! 3N interactions fitted to “H and *He properties

N1\
AN VAN



Equation of state of symmetric nuclear matter,
Nuclear saturation
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* saturation point consistent with experiment, without new free parameters

e cutoff c

¢ 3rd orc

e cutoff c

ependence at 2nd order significantly reduced
er contributions small

ependence consistent with expected size of 4N force contributions



neutron matter

Hierarchy of many-body contributions

nuclear matter

| | | | vl | |
40
> | > 0
S 20 S
= |l I -
Q o
5 L S
Q - Q i
g 0 g 20 F ]
> i > i
5 2
QO Q
Uﬁ i kinetic f] -40 i kinetic ]
-20 -
-60 - -
_40 i | | | | | | | | | | | | | | ] : | | | | | | | | | | | | | | | | | | | | | | | | i
0 0.05 0.1 0.15 0.05 0.1 0.15 0.2 0.25 0.3

0 [fm”] o [fm”]

* binding energy results from cancellations of much larger kinetic and potential
energy contributions

* chiral hierarchy of many-body terms preserved for considered density range

e cutoff dependence of natural size, consistent with chiral exp. parameter ~ 1/3



Hierarchy of many-body contributions

neutron matter nuclear matter
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* binding energy results from cancellations of much larger kinetic and potential
energy contributions

* chiral hierarchy of many-body terms preserved for considered density range

e cutoff dependence of natural size, consistent with chiral exp. parameter ~ 1/3



Hierarchy of many-body contributions

neutron matter nuclear matter
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* binding energy results from cancellations of much larger kinetic and potential
energy contributions

* chiral hierarchy of many-body terms preserved for considered density range

e cutoff dependence of natural size, consistent with chiral exp. parameter ~ 1/3



SRG-evolved NN + 3N interactions in light nuclei

Nuclear Landscape
Ab initio

Configuration Interaction
Density Functional Theory

stable nuc/e/

known nuclei ’

neutro
ns

(24
&
o
-
é

J

consider ab-initio calculations of light nuclei
based on SRG-evolved interactions



SRG evolution of 3N interactions

N
d

C1, €3, C4 terms c¢p term cp term

/N

* So far: /
fit intermediate (cp) and short-range AR >'\"’
(ce) 3NF couplings to few-body systems at

different resolution scales:

ESH = —8.482MeV and 7ige = 1.95 —1.96 tm

* |deal case: evolve 3NF consistently to lower resolution

* has been achieved using oscillator basis states, promising results in very
light nuclei; problems in heavier nuclei, not suitable for use in infinite systems

=740 | [ B B

3 NN-only

e—o NN + NNN-induced | -
¢—& NN + NNN .

Ground-State Energy [MeV]
%
e}
|

Jurgenson, Navratil, Furnstahl, PRL 103, 082501(2009)
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Indications of significant
4N contributions!?

ab initio calculations
(no-core shell model) of light nuclei:

small resolution dependence

AN

significant resolution dependence!
(due to long-range part
of initial 3N interaction)

Roth et.al, PRL 107,072501 (201 1)



SRG evolution of 3N interactions
* contradicts our nucleonic matter results!
* convergence problems in RG evolution of 3N interactions in oscillator basis?
evolve 3N interaction in plane-wave basis

* similar technology to solving the A=3 Schroedinger (Faddeev) equations

* allows systematic investigation of flow of low-energy couplings and
provides matrix elements suitable for finite nuclei and infinite-matter

calculations

* makes it possible to study the evolution of operators like densities



Correlations in nuclear systems

What is this vertex?
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Higinbotham, arXiv:1010.4433

/Short-range-correlation
| interpretation:

K (fm )
3 4 5

1

0.5

(fm)
0

I-o.s
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k :low rel. momentum

k" high rel. momentum

* detection of knocked out pairs

with large relative momenta

* excess of np pairs over pp pairs
Subedi et al., Science 320, 1476 (2008)

Explanation in terms
of low-momentum interactions?



Correlations in nuclear systems

What is this vertex?

e,
e
q
N
/
N
A A-2

Higinbotham, arXiv:1010.4433

Short-range-correlation
Interpretation:

K (fm )

k :low rel. momentum

k" high rel. momentum

¢ »

g 9

'/:/«
6 -

* detection of knocked out pairs

with large relative momenta

* excess of np pairs over pp pairs
Subedi et al., Science 320, 1476 (2008)

Explanation in terms
of low-momentum interactions?

-

Vertex depends on the resolution!\
RG provides systematic
way to calculate such
processes at low resolution.
J




Scaling in nuclear systems
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* scaling behavior of momentum distribution function:
pNN(% Q — 0) ~ CA X pNN,Deuteron(Q7 Q — O) at |arge q

* dominance of np pairs over pp pairs
* “hard” (high resolution) interaction used, calculations hard!

* dominance explained by short-range tensor forces



Nuclear scaling at low resolution

<¢,\]O>\\¢>\> factorizes into a low-momentum structure and a
universal high momentum part if the initial operator only
weakly couples low and high momenta ——

key: Ux(k,q) = K(k)Q(q) for k< X and ¢> A

factorization!

That leads to:

A s
(x| Ox [0y) = /odkdk//o dqdq' " (k)Ux(k,q)O(q, ¢ )Ux(d, K)o (k)

Q

A A
/0 dk dk"T (k') [ /0 dgdq' K (k)K(q)0(q,q ) K (¢) K (k') + IgogK (k) K (K') | 4 (k)

with the universal quantity:

looo = A dq dq' Q(0)0(a, ) Q(d)

valid if initial operator weakly couples low and high momenta



Nuclear scaling at low resolution

<¢>\]O>\\¢>\> factorizes into a low-momentum structure and a
universal high momentum part if the initial operator only
weakly couples low and high momenta ——

4 )
RG transformation of
pair density operator \ / Ux S
(induced many-body
terms neglected): 5 / \ )

“simple” calculation of pair density at low resolution in nuclear matter:

(pP.q)) = (A ) + + (Y + 7




Nuclear scaling at low resolution
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* pair-densities approximately resolution independent
* significant enhancement of np pairs over nn pairs due to tensor force

* reproduction of previous results using a “simple” calculation at low resolution!
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High-resolution experiments can be explained by low-resolution methods!

~

Opens door to study other electro-weak processes and higher-body correlations.
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Summary

* low-resolution interactions allow simpler calculations for nuclear systems

* observables invariant under changes in resolution scale, interpretation can change!
e chiral EFT provides systematic framework for constructing nuclear Hamiltonians

* 3N interactions are essential at low resolution

* nuclear matter equation of state consistent with empirical constraints

* constraints for the nuclear equation of state and radii of neutron stars



