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Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit low-energy scattering data

• “hard” NN interactions contain repulsive core at small relative distance

• strong coupling between low and high-momentum components

          nuclear many-body problem non-perturbative, hard to solve!

Problem: Traditional “hard” NN interactions

Claim: 
Problems due to high resolution from interaction!
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Resolution dependence of nuclear forces

quarks+gluons/partons: 

typical momenta in nuclei: Q ∼ mπ

QCD
Effective theory for NN, 3N, many-N interactions:

chiral EFT: nucleons interacting via pion exchanges and 
short-range contact interactions

pionless EFT: unitary regime, 
non-universal corrections

large scattering length physics:



• choose effective degrees of 
freedom: here nucleons and pions

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Basic concepts of chiral effective field theory
                    NN       3N           4N



• cD and cE have to be determined 
in A   3 systems 

• large uncertainties in 2   coupling 
constants at present:

π

             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

Leading order chiral 3N forces

leads to theoretical uncertainties in
many-body observables 

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

∆
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Hλ = UλHU†
λ λ

dHλ

dλ
= [ηλ, Hλ]

|ψλ〉 = Uλ |ψ〉 Oλ = UλOU†
λ

ηλ = [Gλ, Hλ]

⇒ 〈ψ| O |ψ〉 = 〈ψλ| Oλ |ψλ〉

Changing the resolution: 
The (Similarity) Renormalization Group

• goal: generate unitary transformation of “hard” Hamiltonian

• change resolution in small steps:

with the resolution parameter 

• specifying      by generator      :

• transformed wave functions and operators

ηλ Gλ

Overview RG Summary Extras Flow Results History Eqs. Problem

Two ways to decouple with RG equations
“Vlow k ”
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e.g., demand
dT (k , k ′; k2)/dΛ = 0
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Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]
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relative kinetic energy operator                :
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• elimination of coupling between low- and high momentum components,
calculations much easier

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions!

Changing the resolution: 
The (Similarity) Renormalization Group



Why are there 3N forces?
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Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system
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Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Classical analog
Tidal effects lead to 3N forces in earth-sun-moon system:

• force between earth and moon depends on the position of sun

• tidal deformations are internal excitations

• nucleons are composite particles, can also be excited

• change of resolution changes the excitations that can be 

described explicitly           change of 3N force

• three-nucleon forces are crucial at low resolution!



VNN V3N

V3N

V3N

Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-momentum interactions much more perturbative

• inclusion of 3N interaction contributions!

• use chiral interactions as initial input for RG evolution 

+ . . .

Hartree-Fock

VNN

VNN

++ +
V3N

V3N

V3N

VNN

VNN

V3N

2nd-order

Hartree-Fock

kinetic energy

3rd-order 
and beyond

H(λ) = T + VNN(λ) + V3N(λ) + ...



• significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• energy sensitive to uncertainties in 3N interaction

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

ENN+3N,eff
(1) ENN+3N,eff

2.0 < 3N < 2.5 fm-1
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• good agreement with other approaches (different NN interactions)

Hartree-Fock 2nd-order



Neutron matter:
Symmetry energy

S2(ρ) = a4 +
p0

ρ2
0

(ρ− ρ0)

E(ρ, α = 1) = −aV +
K0

18ρ2
0

(ρ− ρ0)2 + S2(ρ)

• given the experimental constraint a4 = 30± 4 MeV
smaller absolute values of      seem to be preferred from our resultsc3

c1 [GeV] c3 [GeV] a4 [MeV] p0 [MeV fm−3]
−0.81 −3.2 31.7 2.4/2.5
−0.81 −5.7 33.7 2.9/3.0
−0.7 −3.2 31.7 2.4/2.5
−1.4 −5.7 34.5 3.3/3.4

• uncertainties in     couplings lead to uncertainties in symmetry energyci



Constraints on the nuclear equation of state (EOS)

Structure of a neutron star is determined by 
Tolman-Oppenheimer-Volkov (TOV) equation:

dP

dr
= −GMε

r2

[
1 +

P

εc2

] [
1 +

4πr3P

Mc2

] [
1− 2GM

c2r

]−1

crucial ingredient: energy density ε = ε(P )

LETTER
doi:10.1038/nature09466

A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chainMonte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.

2 8 O C T O B E R 2 0 1 0 | V O L 4 6 7 | N A T U R E | 1 0 8 1

Macmillan Publishers Limited. All rights reserved©2010

parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.

 89.1

 89.12

 89.14

 89.16

 89.18

 89.2

 89.22

 89.24a b

0.48 0.49 0.5 0.51 0.52

In
cl

in
at

io
n 

an
gl

e,
 i 

(°
)

Companion mass, M2 (M()
1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

P
ro

ba
bi

lit
y 

de
ns

ity

Pulsar mass (M()

Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a

a

b

c

–40

–30

–20

–10

 0

 10

 20

 30

–40

–30

–20

–10

 0

 10

 20

 30
Ti

m
in

g 
re

si
du

al
 (μ

s)

–40

–30

–20

–10

 0

 10

 20

 30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Orbital phase (turns)

Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Mmax = 1.65M! → 1.97± 0.04 M!



Neutron star radius constraints

Problem: Solution of  TOV equation requires EOS up to very high densities. 
Radius of a typical NS (M~1.4 M  ) theoretically not well constrained. 

But: Radius of NS is relatively insensitive to high density region. 
!

KH et al., PRL 105, 161102 (2010)
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   incorporation of beta-equilibrium: neutron matter         neutron star matter

parametrize piecewise 
high-density extensions of EOS:

• use polytropic ansatz

• range of parameters

  limited by physics!

Γ1, ρ12,Γ2

p ∼ ρΓ



• radius constraint after incorporating crust corrections:

Neutron star radius 
constraints

• low-density part of EOS sets scale for allowed high-density extensions 

use the constraints:

vs(ρ) =
√

dP/dε < c

10.5− 13.5 km

Mmax > 1.97 M!

KH et al., PRL 105, 161102 (2010)
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FIG. 2: Scaled power spectral density of the GW signal for
the Shen (black solid line) and the eosUU (blue line) EoSs
compared to the Advanced LIGO (red dashed line) and ET
(black dashed line) unity SNR sensitivities. The inset shows
the GW amplitude of the + polarization at 50 Mpc for the
Shen EoS.

gles) belong to simulations for the MIT60 and Glendnh3
EoSs, which both have strikingly different M-R relations
(dashed lines in Fig. 1). Note that a SQM EoS could
lead to discriminating observational features, e.g. in the
cosmic ray flux [20, 22], but the particular model MIT60
is ruled out by the 1.97M! NS of [3]. The Glendnh3 EoS
seems in conflict with theoretical knowledge of EoS prop-
erties at subnuclear densities [4]. Ignoring the two out-
liers, thefpeak −Rmax correlation (crosses only) becomes
even stronger. Already one determination of fpeak could
therefore seriously constrain the M-R relation and conse-
quently the nuclear EoS. Additionally, simulated merg-
ers of 1.2 M!-1.5 M! binaries for selected EoSs (circles)
demonstrate that the relation between fpeak and Rmax is
not very sensitive to the initial mass ratio [11]. Squares
in Fig. 3 display results for 1.2 M!-1.2 M! mergers. For
those fpeak is clearly lower [11] with differences being
larger for smaller Rmax. But also for the symmetric bi-
naries with lower mass a correlation seems to exist. We
stress that the total binary mass Mtot will be measurable
by the GW inspiral signal [43].
fpeak turns out to correlate also with other NS proper-

ties: From Fig. 4 (left panel) a close relation between the
radius R1.35 of a 1.35 M! star (or alternatively its com-
pactnessGM/(c2R)) and fpeak is evident. Again only the
MIT60 and Glendnh3 EoSs occur as outliers. This find-
ing is not surprising, because the TOV solutions show
already an approximate correlation between R1.35 and
Rmax. A similar coupling is found between fpeak and
the maximum central density ρmax of non-rotating NSs,
where higher ρmax yield higher fpeak.
However, no clear correlation exists between fpeak

and the maximum compactness of non-spinning NSs or
Mmax, though typically a lower Mmax gives a higher
fpeak, and fpeak > 2.8 kHz seems incompatible with
Mmax > 2.4 M!. We propose the following expla-

9 10 11 12 13 14 15
1.5

2

2.5

3

3.5

4

R
max

 [km]

f p
e

a
k
 [
k
H

z
]

FIG. 3: Peak frequency of the postmerger GW emission vs.
radius of the maximum-mass TOV solution. Blue cases are
excluded by [3]. See text for symbols.
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vs.
√
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the binary mass. Symbols have same meaning as in Fig. 3.

nation for the fact that the postmerger GW emission
is determined by Rmax. Numerical calculations have
shown that for any EoS the frequency of the f-mode,
which generates the GW radiation at fpeak [42], depends
nearly linearly on the square root of the mean density
(M/R3)1/2 [44]. Since we fix Mtot, the mass-dependence
drops out. Assuming that the radius of the DRO re-
lates to the M-R relation of non-rotating NSs [47], we
end up with fpeak ∝ R−1.5

max . This hypothesis is verified
in the right panel of Fig. 4, where fpeak is plotted versus
(Mtot/R3

max)
1/2 and except for the mentioned outliers a

clear power-law scaling is visible.
Despite an estimated detection rate of only 0.1 to 1

events/yr for Advanced LIGO (accounting for random
orientation and adopting the “realistic” and the “high”
merger rates of [18]) the relations found in this work may
prove very useful, because already a single measurement
is likely to determine Rmax and R1.35 to within some
100 m. This will place significant constraints on the
M-R relation and thus the EoS (see [2, 45] for the in-
verse procedure). These prospects appear superior to the

Bauswein and Janka, 
arXiv:1106.1616  (2011)
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• high-density part of nuclear EOS only loosely constrained

• simulations of NS binary mergers show strong correlation between between
           of the GW spectrum and          of the corresponding EOS

• measuring         is key step for constraining chiral EOS systematically at large  
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the GW amplitude of the + polarization at 50 Mpc for the
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gles) belong to simulations for the MIT60 and Glendnh3
EoSs, which both have strikingly different M-R relations
(dashed lines in Fig. 1). Note that a SQM EoS could
lead to discriminating observational features, e.g. in the
cosmic ray flux [20, 22], but the particular model MIT60
is ruled out by the 1.97M! NS of [3]. The Glendnh3 EoS
seems in conflict with theoretical knowledge of EoS prop-
erties at subnuclear densities [4]. Ignoring the two out-
liers, thefpeak −Rmax correlation (crosses only) becomes
even stronger. Already one determination of fpeak could
therefore seriously constrain the M-R relation and conse-
quently the nuclear EoS. Additionally, simulated merg-
ers of 1.2 M!-1.5 M! binaries for selected EoSs (circles)
demonstrate that the relation between fpeak and Rmax is
not very sensitive to the initial mass ratio [11]. Squares
in Fig. 3 display results for 1.2 M!-1.2 M! mergers. For
those fpeak is clearly lower [11] with differences being
larger for smaller Rmax. But also for the symmetric bi-
naries with lower mass a correlation seems to exist. We
stress that the total binary mass Mtot will be measurable
by the GW inspiral signal [43].
fpeak turns out to correlate also with other NS proper-

ties: From Fig. 4 (left panel) a close relation between the
radius R1.35 of a 1.35 M! star (or alternatively its com-
pactnessGM/(c2R)) and fpeak is evident. Again only the
MIT60 and Glendnh3 EoSs occur as outliers. This find-
ing is not surprising, because the TOV solutions show
already an approximate correlation between R1.35 and
Rmax. A similar coupling is found between fpeak and
the maximum central density ρmax of non-rotating NSs,
where higher ρmax yield higher fpeak.
However, no clear correlation exists between fpeak

and the maximum compactness of non-spinning NSs or
Mmax, though typically a lower Mmax gives a higher
fpeak, and fpeak > 2.8 kHz seems incompatible with
Mmax > 2.4 M!. We propose the following expla-
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nation for the fact that the postmerger GW emission
is determined by Rmax. Numerical calculations have
shown that for any EoS the frequency of the f-mode,
which generates the GW radiation at fpeak [42], depends
nearly linearly on the square root of the mean density
(M/R3)1/2 [44]. Since we fix Mtot, the mass-dependence
drops out. Assuming that the radius of the DRO re-
lates to the M-R relation of non-rotating NSs [47], we
end up with fpeak ∝ R−1.5

max . This hypothesis is verified
in the right panel of Fig. 4, where fpeak is plotted versus
(Mtot/R3

max)
1/2 and except for the mentioned outliers a

clear power-law scaling is visible.
Despite an estimated detection rate of only 0.1 to 1

events/yr for Advanced LIGO (accounting for random
orientation and adopting the “realistic” and the “high”
merger rates of [18]) the relations found in this work may
prove very useful, because already a single measurement
is likely to determine Rmax and R1.35 to within some
100 m. This will place significant constraints on the
M-R relation and thus the EoS (see [2, 45] for the in-
verse procedure). These prospects appear superior to the
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Gravitational wave signals 
from neutron star binary mergers
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Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

nS ∼ 0.16 fm−3

Ebinding/N ∼ −16 MeV

empirical nuclear 
saturation properties

l̄S ∼ 1.8 fm

KH et al., PRC(R) 83, 031301 (2011)



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?
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Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions
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Momentum units (! = c = 1): typical relative momentum
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• 3N forces are essential! 3N interactions fitted to       and        properties
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• saturation point consistent with experiment, without new free parameters

• cutoff dependence at 2nd order significantly reduced

• 3rd order contributions small

• cutoff dependence consistent with expected size of 4N force contributions
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Hierarchy of many-body contributions 

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter



Hierarchy of many-body contributions 

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
Ekinetic  + ENN

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
Ekinetic  + ENN

• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter



Hierarchy of many-body contributions 

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
E3N + 3N-NN
Etotal

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
E3N + 3N-NN
Etotal

• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter



SRG-evolved NN + 3N interactions in light nuclei

consider ab-initio calculations of light nuclei 
based on SRG-evolved interactions



SRG evolution of 3N interactions

c1, c3, c4 terms cD term cE term

• So far: 
fit intermediate (cD) and short-range 
(cE) 3NF couplings to few-body systems at 
different resolution scales: 

E3H = −8.482 MeV r4He = 1.95− 1.96 fmand

• Ideal case: evolve 3NF consistently to lower resolution
★ has been achieved using oscillator basis states, promising results in very 
light nuclei; problems in heavier nuclei, not suitable for use in infinite systems2

Our calculations are performed in the Jacobi coordi-
nate harmonic oscillator (HO) basis of the No-Core Shell
Model (NCSM) [14]. This is a translationally invariant,
anti-symmetric basis for each A, with a complete set of
states up to a maximum excitation of Nmax!Ω above the
minimum energy configuration, where Ω is the harmonic
oscillator parameter. The procedures used here build di-
rectly on Ref. [13], which presents a one-dimensional im-
plementation of our approach along with a general anal-
ysis of the evolving many-body hierarchy.

We start by evolving Hλ in the A = 2 subsystem, which

completely fixes the two-body matrix elements 〈V (2)
λ 〉.

Next, by evolving Hλ in the A = 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by sub-

tracting the evolved 〈V (2)
λ 〉 elements in the A = 3 ba-

sis [13]. Having obtained the separate NN and NNN
matrix elements, we can apply them unchanged to any
nucleus. We are also free to include any initial three-
nucleon force in the initial Hamiltonian without chang-
ing the procedure. If applied to A ≥ 4, four-body (and
higher) forces will not be included and so the transforma-
tions will be only approximately unitary. The questions
to be addressed are whether the decreasing hierarchy of
many-body forces is maintained and whether the induced
four-body contribution is unnaturally large. We summa-
rize in Table I the different calculations to be made for
3H and 4He to confront these questions.

The initial (λ = ∞) NN potential used here is the
500MeV N3LO interaction from Ref. [15]. The initial
NNN potential is the N2LO interaction [16] in the local
form of Ref. [17] with constants fit to the average of tri-
ton and 3He binding energies and to triton beta decay
according to Ref. [18]. We expect similar results from
other initial interactions because the SRG drives them
toward near universal form; a survey will be given in
Ref. [19]. NCSM calculations with these initial interac-
tions and the parameter set in Table I of Ref. [18] yield
energies of −8.473(4)MeV for 3H and −28.50(2)MeV for
4He compared with −8.482 MeV and −28.296 MeV from
experiment, respectively. So there is a 20 keV uncertainty
in the calculation of 4He from incomplete convergence
and a 200keV discrepancy with experiment. The latter
is consistent with the omission of three- and four-body
chiral interactions at N3LO. These provide a scale for
assessing whether induced four-body contributions are
important compared to other uncertainties.

In Fig. 1, the ground-state energy of the triton is plot-
ted as a function of the flow parameter λ. Evolution is
from λ = ∞, which is the initial (or “bare”) interaction,
toward λ = 0. We use Nmax = 36 and !Ω = 28 MeV, for
which all energies are converged to better than 10 keV.
We first consider an NN interaction with no initial NNN
(“NN-only”). If Hλ is evolved only in an A = 2 sys-
tem, higher-body induced pieces are lost. The resulting
energy calculations will only be approximately unitary
for A > 2 and the ground-state energy will vary with λ
(squares). Keeping the induced NNN yields a flat line
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FIG. 1: (Color online) Ground-state energy of 3H as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.
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FIG. 2: (Color online) Ground-state energy of 4He as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.

(circles), which implies an exactly unitary transforma-
tion; the line is equally flat if an initial NNN is included
(diamonds). Note that the net induced three-body is
comparable to the initial NNN contribution and thus is
of natural size.

In Fig. 2, we examine the SRG evolution in λ for 4He

with !Ω = 36 MeV. The 〈V (2)
λ 〉 and 〈V (3)

λ 〉 matrix ele-
ments were evolved in A = 2 and A = 3 with Nmax = 28
and then truncated to Nmax = 18 at each λ to diagonal-
ize 4He. The NN-only curve has a similar shape as for
the triton. In fact, this pattern of variation has been ob-

Jurgenson, Navratil, Furnstahl, PRL 103, 082501(2009)



2

responding solution of the flow equation in two-body space

(using either a partial-wavemomentum or harmonic-oscillator

representation) we extract the irreducible two- and three-body

terms of the Hamiltonian for the use in A-body calculations.

We have made major technical improvements regarding

the SRG transformation, reducing the computational effort by

three orders of magnitude compared to Ref. [6], e.g., by us-

ing a solver with adaptive step-size and optimized matrix op-

erations. Furthermore, we have developed a transformation

from 3N Jacobi matrix elements to a JT -coupled representa-

tion with a highly efficient storage scheme, which allows us

to handle 3N matrix-element sets of unprecedented size. A

detailed discussion of these aspects is presented elsewhere.

Importance-Truncated NCSM. Based on the SRG-

evolved Hamiltonian we treat the many-body problem in the

NCSM, i.e., we solve the large-scale eigenvalue problem

of the Hamiltonian, represented in a many-body basis of

HO Slater determinants truncated w.r.t. the maximum HO

excitation energy Nmax!Ω. In order to cope with the factorial

growth of the basis dimension with Nmax and particle number

A, we use the importance-truncation (IT) scheme introduced

in Refs. [12, 13]. The IT-NCSM uses an importance measure

κν for the individual basis states |Φν〉 derived frommany-body

perturbation theory and retains only states with |κν| above

a threshold κmin in the model space. Through a variation

of the threshold and an a posteriori extrapolation κmin → 0

the contribution of discarded states is recovered. We use

the sequential update scheme discussed in Ref. [13], which

connects to the full NCSM model space and thus the exact

NCSM results in the limit of vanishing threshold. In the

following we always report threshold-extrapolated results

including an estimate for the extrapolation uncertainties. For

the present application we have extended the IT-NCSM to

include full 3N interactions. Using the JT -coupled 3N matrix

elements we are able to perform calculations up to Nmax = 12

or 14 for all p-shell nuclei with moderate computational

resources. Due to the JT -coupling, we can keep all 3N matrix

elements in memory using a fast on-the-fly decoupling.

Ground-State Energies. We first focus on IT-NCSM cal-

culations for the ground states of 4He, 6Li, 12C, and 16O us-

ing SRG-transformed chiral NN+3N interactions. Through-

out this work we use the chiral NN interaction at N3LO of

Entem and Machleidt [1] and the 3N interaction at N2LO [14]

with low energy constants determined from the triton binding

energy and β-decay half-live [15]. In order to disentangle the

effects of the initial and the SRG-induced 3N contributions,

we consider three different Hamiltonians. (1) NN only: start-

ing from the chiral NN interaction only the SRG-evolved NN

contributions are kept. (2) NN+3N-induced: starting from the

chiral NN interaction the SRG-evolved NN and the induced

3N terms are kept. (3) NN+3N-full: starting from the chiral

NN+3N interaction the SRG-evolved NN and all 3N terms

are kept. For each Hamiltonian we assess the dependence of

the observables, here the ground-state energies, on the flow-

parameter α. We use the five values α = 0.04 fm4, 0.05 fm4,

0.0625 fm4, 0.08 fm4, and 0.16 fm4, which correspond to mo-
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FIG. 1: (color online) IT-NCSM ground-state energies for 4He and
6Li as function of Nmax for the three types of Hamiltonians (see col-

umn headings) for a range of flow parameters: α = 0.04 fm4 (•),
0.05 fm4 ( !), 0.0625 fm4 ("), 0.08 fm4 (!), and 0.16 fm4 (!). Error
bars indicate the uncertainties of the threshold extrapolations. The

bars at the right-hand-side of each panel indicate the results of expo-

nential extrapolations of the individual Nmax-sequences (see text).

mentum scales Λ = α−1/4 = 2.24 fm−1, 2.11 fm−1, 2 fm−1,

1.88 fm−1, and 1.58 fm−1, respectively. For extrapolations to

infinite model space, Nmax → ∞, we use simple exponen-

tial fits based on the last 3 or 4 data points. The extrapolated

energy is given by the average of the two extrapolations, the

uncertainty by the difference.

The ground-state energies obtained in IT-NCSM calcula-

tions for 4He and 6Li with the three Hamiltonians are sum-

marized in Fig. 1. Analogous calculations in the full NCSM

for the same SRG-evolved initial Hamiltonian have been pre-

sented in Ref. [5] for 4He and in Ref. [6] for 6Li. We have

cross-checked our results with Refs. [5, 6] and found excel-

lent agreement.

The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calculations

with Nmax. With increasing α the convergence is systemati-

cally improved for all three versions of the Hamiltonian. With

the initial Hamiltonian, i.e. α = 0, even the largemodel spaces

we use here are not sufficient to even obtain meaningful ex-

trapolations, with the exception of the tightly-bound 4He.

For the NN-only Hamiltonian Fig. 1 shows a clear α-

dependence of the extrapolated ground-state energies for 4He

and 6Li, hinting at sizable SRG-induced 3N contributions.

When including those induced 3N terms, i.e. when using the

NN+3N-induced Hamiltonian, the extrapolated ground-state

energies are shifted significantly and become α-independent

within the uncertainties of the Nmax-extrapolation. Thus, in-

duced contributions beyond the 3N level originating from the
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FIG. 2: (color online) IT-NCSM ground-state energies for 12C and
16O as function of Nmax for the three types of Hamiltonians and a

range of flow parameters (for details see Fig. 1).

initial NN interaction are negligible in the α-range considered

here, indicating that the NN+3N-induced Hamiltonian is uni-

tarily equivalent to the initial NN Hamiltonian. The extrapo-

lated ground-state energies for different α are summarized in

Tab. I.

By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are

lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable

α-dependence in the range considered here. We conclude that

induced 3N terms originating from the initial NN interaction

are important, but that induced 4N (and higher) terms are not

relevant for light p-shell nuclei, since the ground-state ener-

gies obtained with the NN+3N-induced and the NN+3N-full

Hamiltonian are practically α-independent.

This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-

ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O

NN 0.05 -28.08(2) -31.5(2) -99.1(6) -161.0(2)

only 0.0625 -28.25(1) -31.8(1) -101.4(3) -164.9(6)

0.08 -28.38(1) -32.2(1) -103.7(2) -170.2(4)

NN+ 0.05 -25.33(1) -27.7(2) -76.9(2) -119.5(3)

3N-ind. 0.0625 -25.34(1) -27.6(2) -77.2(1) -119.7(6)

0.08 -25.34(1) -27.6(1) -77.4(2) -119.5(2)

NN+ 0.05 -28.45(3) -31.8(2) -96.1(4) -143.7(2)

3N-full 0.0625 -28.45(1) -31.8(1) -96.8(3) -145.6(2)

0.08 -28.46(1) -31.8(1) -97.6(1) -147.8(1)

exp. -28.30 -31.99 -92.16 -127.62
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FIG. 3: (color online) Nmax-extrapolated ground-state energies of
4He

and 16O as function of the flow parameter α for the NN-only (•), the
NN+3N-induced ( !), and the NN+3N-full Hamiltonian (").

tions for the ground states of 12C and 16O starting from chiral

NN+3N interactions. By combining the IT-NCSM with the

JT -coupled storage scheme for the 3N matrix elements we

are able to reach model spaces up to Nmax = 12 for the upper

p-shell at moderate computational cost. Previously, even the

most extensive NCSM calculations including full 3N interac-

tions were limited to Nmax = 8 in this regime [16]. As evident

from the Nmax-dependence of the ground-state energies, this

increase in Nmax is vital for obtaining precise extrapolations.

The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe

α-dependence indicating sizable induced 3N contributions.

Their inclusion in the NN+3N-induced Hamiltonian leads to

ground-state energies that are practically independent of α,

confirming that induced 4N contributions are irrelevant when

starting from the NN interaction only. Therefore, the NN+3N-

induced results can be considered equivalent to a solution for

the initial NN interaction. The 16O binding energy per nucleon

of 7.48(4)MeV is in good agreement with a recent coupled-

cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral

NN interaction [17].

In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show

a significant α-dependence, as evident from Fig. 2(c) and (f).

The inclusion of the initial chiral 3N interaction does induce

4N contributions whose omission leads to the α-dependence.

A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in

Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits

a sizable variation of the ground-state energies of about 25

MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4

to 0.16 fm4. The inclusion of the induced 3N terms elimi-

nates this α-dependence. The inclusion of the initial 3N in-

teraction again generates an α-dependence of about 10 MeV

for 16O. Note that the induced 4N (and higher) contributions

that are needed to compensate the α-dependence for 16O reach

about half the size of the total 3N contribution in the SRG-

transformed Hamiltonian. This is evidence that the hierarchy

of the many-body forces in chiral EFT may not be preserved

by the SRG transformation.

2

responding solution of the flow equation in two-body space

(using either a partial-wavemomentum or harmonic-oscillator

representation) we extract the irreducible two- and three-body

terms of the Hamiltonian for the use in A-body calculations.

We have made major technical improvements regarding

the SRG transformation, reducing the computational effort by

three orders of magnitude compared to Ref. [6], e.g., by us-

ing a solver with adaptive step-size and optimized matrix op-

erations. Furthermore, we have developed a transformation

from 3N Jacobi matrix elements to a JT -coupled representa-

tion with a highly efficient storage scheme, which allows us

to handle 3N matrix-element sets of unprecedented size. A

detailed discussion of these aspects is presented elsewhere.

Importance-Truncated NCSM. Based on the SRG-

evolved Hamiltonian we treat the many-body problem in the

NCSM, i.e., we solve the large-scale eigenvalue problem

of the Hamiltonian, represented in a many-body basis of

HO Slater determinants truncated w.r.t. the maximum HO

excitation energy Nmax!Ω. In order to cope with the factorial

growth of the basis dimension with Nmax and particle number

A, we use the importance-truncation (IT) scheme introduced

in Refs. [12, 13]. The IT-NCSM uses an importance measure

κν for the individual basis states |Φν〉 derived frommany-body

perturbation theory and retains only states with |κν| above

a threshold κmin in the model space. Through a variation

of the threshold and an a posteriori extrapolation κmin → 0

the contribution of discarded states is recovered. We use

the sequential update scheme discussed in Ref. [13], which

connects to the full NCSM model space and thus the exact

NCSM results in the limit of vanishing threshold. In the

following we always report threshold-extrapolated results

including an estimate for the extrapolation uncertainties. For

the present application we have extended the IT-NCSM to

include full 3N interactions. Using the JT -coupled 3N matrix

elements we are able to perform calculations up to Nmax = 12

or 14 for all p-shell nuclei with moderate computational

resources. Due to the JT -coupling, we can keep all 3N matrix

elements in memory using a fast on-the-fly decoupling.

Ground-State Energies. We first focus on IT-NCSM cal-

culations for the ground states of 4He, 6Li, 12C, and 16O us-

ing SRG-transformed chiral NN+3N interactions. Through-

out this work we use the chiral NN interaction at N3LO of

Entem and Machleidt [1] and the 3N interaction at N2LO [14]

with low energy constants determined from the triton binding

energy and β-decay half-live [15]. In order to disentangle the

effects of the initial and the SRG-induced 3N contributions,

we consider three different Hamiltonians. (1) NN only: start-

ing from the chiral NN interaction only the SRG-evolved NN

contributions are kept. (2) NN+3N-induced: starting from the

chiral NN interaction the SRG-evolved NN and the induced

3N terms are kept. (3) NN+3N-full: starting from the chiral

NN+3N interaction the SRG-evolved NN and all 3N terms

are kept. For each Hamiltonian we assess the dependence of

the observables, here the ground-state energies, on the flow-

parameter α. We use the five values α = 0.04 fm4, 0.05 fm4,

0.0625 fm4, 0.08 fm4, and 0.16 fm4, which correspond to mo-
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FIG. 1: (color online) IT-NCSM ground-state energies for 4He and
6Li as function of Nmax for the three types of Hamiltonians (see col-

umn headings) for a range of flow parameters: α = 0.04 fm4 (•),
0.05 fm4 ( !), 0.0625 fm4 ("), 0.08 fm4 (!), and 0.16 fm4 (!). Error
bars indicate the uncertainties of the threshold extrapolations. The

bars at the right-hand-side of each panel indicate the results of expo-

nential extrapolations of the individual Nmax-sequences (see text).

mentum scales Λ = α−1/4 = 2.24 fm−1, 2.11 fm−1, 2 fm−1,

1.88 fm−1, and 1.58 fm−1, respectively. For extrapolations to

infinite model space, Nmax → ∞, we use simple exponen-

tial fits based on the last 3 or 4 data points. The extrapolated

energy is given by the average of the two extrapolations, the

uncertainty by the difference.

The ground-state energies obtained in IT-NCSM calcula-

tions for 4He and 6Li with the three Hamiltonians are sum-

marized in Fig. 1. Analogous calculations in the full NCSM

for the same SRG-evolved initial Hamiltonian have been pre-

sented in Ref. [5] for 4He and in Ref. [6] for 6Li. We have

cross-checked our results with Refs. [5, 6] and found excel-

lent agreement.

The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calculations

with Nmax. With increasing α the convergence is systemati-

cally improved for all three versions of the Hamiltonian. With

the initial Hamiltonian, i.e. α = 0, even the largemodel spaces

we use here are not sufficient to even obtain meaningful ex-

trapolations, with the exception of the tightly-bound 4He.

For the NN-only Hamiltonian Fig. 1 shows a clear α-

dependence of the extrapolated ground-state energies for 4He

and 6Li, hinting at sizable SRG-induced 3N contributions.

When including those induced 3N terms, i.e. when using the

NN+3N-induced Hamiltonian, the extrapolated ground-state

energies are shifted significantly and become α-independent

within the uncertainties of the Nmax-extrapolation. Thus, in-

duced contributions beyond the 3N level originating from the

Roth et. al, PRL 107, 072501 (2011)

Indications of significant 
4N contributions?

small resolution dependence

significant resolution dependence!
(due to long-range part 
of initial 3N interaction)

ab initio calculations 
(no-core shell model) of light nuclei:



• similar technology to solving the A=3 Schroedinger (Faddeev) equations
 
• allows systematic investigation of flow of low-energy couplings and 
provides matrix elements suitable for finite nuclei and infinite-matter 
calculations

• makes it possible to study the evolution of operators like densities
 

SRG evolution of 3N interactions

• contradicts our nucleonic matter results!

• convergence problems in RG evolution of 3N interactions in oscillator basis?

• current project: evolve 3N interaction in plane-wave basis



Correlations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,

final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q
2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].
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What is this vertex?

Short-range-correlation
interpretation: Explanation in terms 

of low-momentum interactions? 
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• detection of knocked out pairs 
with large relative momenta
• excess of np pairs over pp pairs
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Correlations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,

final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.
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With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q
2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].
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What is this vertex?

Short-range-correlation
interpretation: Explanation in terms 

of low-momentum interactions? 

Vertex depends on the resolution!
RG provides systematic
way to calculate such 

processes at low resolution. 

q

• detection of knocked out pairs 
with large relative momenta
• excess of np pairs over pp pairs
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: high rel. momentum



• scaling behavior of momentum distribution function:

• dominance of np pairs over pp pairs

• “hard” (high resolution) interaction used, calculations hard!

• dominance explained by short-range tensor forces

Schiavilla et al., PRL 98, 132501 (2007)

Scaling in nuclear systems

at large ρNN(q, Q = 0) ≈ CA × ρNN,Deuteron(q, Q = 0) q

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ

(r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′12 and R′

12) away from a fixed
ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT
(q,Q) =

A(A − 1)

2 (2J + 1)

∑
MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT
(12)ψJMJ

(r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT

is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.

np pairs

pp pairs

p′ + p = Q = 0
p′ − p = 2q

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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Nuclear scaling at low resolution

                   factorizes into a low-momentum structure and a 
universal high momentum part if the initial operator only 
weakly couples low and high momenta           explains scaling!

⇒
〈
ψλ|Oλ|ψλ

〉

key: k < λ q ! λfor and

factorization!

Uλ(k, q) ≈ K(k)Q(q)

That leads to:

with the universal quantity:

IQOQ =
∫ ∞

λ
dq dq′Q(q)O(q, q′)Q(q′)

〈ψλ| Oλ |ψλ〉 =
∫ λ

0
dk dk′

∫ ∞

0
dq dq′ψ†(k)Uλ(k, q)O(q, q′)Uλ(q′, k′)ψλ(k)

≈
∫ λ

0
dk dk′ψ†(k′)

[∫ λ

0
dq dq′K(k)K(q)O(q, q′)K(q′)K(k′) + IQOQK(k)K(k′)

]
ψ†(k)

valid if initial operator weakly couples low and high momenta



Nuclear scaling at low resolution

Uλ

“simple” calculation of pair density at low resolution in nuclear matter: 

Vλ

Vλ

Vλ

Vλ

Vλ

= + + +
〈
ρ(P,q)

〉

RG transformation of 
pair density operator
(induced many-body 

terms neglected):

                   factorizes into a low-momentum structure and a 
universal high momentum part if the initial operator only 
weakly couples low and high momenta           explains scaling!

⇒
〈
ψλ|Oλ|ψλ

〉



Nuclear scaling at low resolution

• pair-densities approximately resolution independent

• significant enhancement of np pairs over nn pairs due to tensor force

• reproduction of previous results using a “simple” calculation at low resolution!
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PRELIMINARY

High-resolution experiments can be explained by low-resolution methods! 
Opens door to study other electro-weak processes and higher-body correlations. 
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Summary

• low-resolution interactions allow simpler calculations for nuclear systems

• observables invariant under changes in resolution scale, interpretation can change!

• chiral EFT provides systematic framework for constructing nuclear Hamiltonians

• 3N interactions are essential at low resolution

• nuclear matter equation of state consistent with empirical constraints

• constraints for the nuclear equation of state and radii of neutron stars


