New Applications of Renormalization Group Methods in Nuclear Physics

Kai Hebeler (OSU)

In collaboration with: S. Bogner (MSU), R. Furnstahl (OSU), J. Lattimer (Stony Brook), A. Nogga (Juelich), C. Pethick (Nordita), A. Schwenk (Darmstadt)

Kyoto, August 31, 2011

Renormalization Group Approach from Ultra Cold Atoms to the Hot QGP

Nuclear equation of state and astrophysical applications

Light and neutron-rich nuclei

Correlations in nuclear systems

Problem: Traditional "hard" NN interactions

- constructed to fit low-energy scattering data
- "hard" NN interactions contain repulsive core at small relative distance
- strong coupling between low and high-momentum components
 - \Rightarrow nuclear many-body problem non-perturbative, hard to solve!

Claim: Problems due to high resolution from interaction!

Problem: Traditional "hard" NN interactions

- constructed to fit low-energy scattering data
- "hard" NN interactions contain repulsive core at small relative distance
- strong coupling between low and high-momentum components
 - \Rightarrow nuclear many-body problem non-perturbative, hard to solve!

Claim: Problems due to high resolution from interaction!

Resolution dependence of nuclear forces

Effective theory for NN, 3N, many-N interactions:

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$

 $\Lambda \gg \Lambda_{
m chiral}$

quarks+gluons/partons: $Q \gg m_{\pi}$

$\Lambda_{ m chiral}$

OC

typical momenta in nuclei: $Q \sim m_{\pi}$ chiral EFT: nucleons interacting via pion exchanges and short-range contact interactions

$\Lambda_{\text{pionless}}$

large scattering length physics: $Q \ll m_{\pi}$ pionless EFT: unitary regime, non-universal corrections

Basic concepts of chiral effective field theory

- choose effective degrees of freedom: here nucleons and pions
- short-range physics captured in few short-range couplings
- separation of scales: Q << Λ_b , breakdown scale Λ_b ~500 MeV
- power-counting: expand in powers Q/Λ_b
- systematic: work to desired accuracy, obtain error estimates

• goal: generate unitary transformation of "hard" Hamiltonian

 $H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$ with the resolution parameter λ

- change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$
- transformed wave functions and operators

$$|\psi_{\lambda}\rangle = U_{\lambda} |\psi\rangle \quad O_{\lambda} = U_{\lambda} O U_{\lambda}^{\dagger} \quad \Rightarrow \quad \langle \psi | O |\psi\rangle = \langle \psi_{\lambda} | O_{\lambda} |\psi_{\lambda}\rangle$$

• specifying η_{λ} by generator G_{λ} : $\eta_{\lambda} = [G_{\lambda}, H_{\lambda}]$

common choice for generator

- elimination of coupling between low- and high momentum components, calculations much easier
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

Not the full story:

RG transformation also changes three-body (and higher-body) interactions!

Equation of state: Many-body perturbation theory

central quantity of interest: energy per particle E/N $H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + ...$

- "hard" interactions require non-perturbative summation of diagrams
- with low-momentum interactions much more perturbative
- inclusion of 3N interaction contributions!
- use chiral interactions as initial input for RG evolution

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Neutron matter: Symmetry energy

$$E(\rho, \alpha = 1) = -a_V + \frac{K_0}{18\rho_0^2}(\rho - \rho_0)^2 + S_2(\rho)$$
$$S_2(\rho) = a_4 + \frac{p_0}{\rho_0^2}(\rho - \rho_0)$$

$c_1 \; [\text{GeV}]$	$c_3 \; [\text{GeV}]$	$a_4 [MeV]$	$p_0 [\mathrm{MeV fm^{-3}}]$
-0.81	-3.2	31.7	2.4/2.5
-0.81	-5.7	33.7	2.9/3.0
-0.7	-3.2	31.7	2.4/2.5
-1.4	-5.7	34.5	3.3/3.4

- uncertainties in c_i couplings lead to uncertainties in symmetry energy
- given the experimental constraint $a_4 = 30 \pm 4 \,\mathrm{MeV}$ smaller absolute values of c_3 seem to be preferred from our results

Constraints on the nuclear equation of state (EOS)

nature

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Credit: NASA/Dana Berry

Stru Tolm

 $\frac{dP}{dr}$

С

eutron star is determined by eimer-Volkov (TOV) equation:

$$\frac{P}{\epsilon c^2} \left[1 + \frac{4\pi r^3 P}{Mc^2} \right] \left[1 - \frac{2GM}{c^2 r} \right]^{-1}$$

dient: energy density $\epsilon = \epsilon(P)$

Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.4 M_{\odot}) theoretically not well constrained.

But: Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter parametrize piecewise 37 crust EOS Γ_{2} high-density extensions of EOS: neutron star matter 36 with c_i uncertainties $\log_{10} P [dyne/cm^2]$ 35 • use polytropic ansatz Γ_1 $p \sim \rho^{\Gamma}$ 34 33 range of parameters 32 $\Gamma_1, \rho_{12}, \Gamma_2$ limited by physics! 31 13.5 13.0 14.0 $\boldsymbol{\rho}_1$ ρ_{12} $\log_{10}\rho [g/cm^3]$ KH et al., PRL 105, 161102 (2010)

- low-density part of EOS sets scale for allowed high-density extensions
- \bullet radius constraint after incorporating crust corrections: $10.5-13.5\,km$

- high-density part of nuclear EOS only loosely constrained
- simulations of NS binary mergers show strong correlation between between $f_{\rm peak}$ of the GW spectrum and $R_{\rm max}$ of the corresponding EOS
- ullet measuring $f_{
 m peak}$ is key step for constraining chiral EOS systematically at large $ho_{
 m a.5}$

Equation of state of symmetric nuclear matter, nuclear saturation

"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."

Hans Bethe (1971)

empirical nuclear saturation properties $n_S \sim 0.16 \,\mathrm{fm}^{-3}$ $E_{\mathrm{binding}}/N \sim -16 \,\mathrm{MeV}$ $\bar{l}_S \sim 1.8 \,\mathrm{fm}$

Equation of state of symmetric nuclear matter, Nuclear saturation

- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- 3N forces are essential! 3N interactions fitted to ${}^{3}\mathrm{H}$ and ${}^{4}\mathrm{He}$ properties

Equation of state of symmetric nuclear matter, Nuclear saturation

- saturation point consistent with experiment, without new free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Hierarchy of many-body contributions

 binding energy results from cancellations of much larger kinetic and potential energy contributions

- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

SRG-evolved NN + 3N interactions in light nuclei

consider ab-initio calculations of light nuclei based on SRG-evolved interactions

SRG evolution of 3N interactions

• So far:

fit intermediate (c_D) and short-range (c_E) 3NF couplings to few-body systems at different resolution scales:

 $E_{^{3}\text{H}} = -8.482 \,\text{MeV}$ and $r_{^{4}\text{He}} = 1.95 - 1.96 \,\text{fm}$

Ideal case: evolve 3NF consistently to lower resolution

* has been achieved using oscillator basis states, promising results in very light nuclei; problems in heavier nuclei, not suitable for use in infinite systems

Jurgenson, Navratil, Furnstahl, PRL 103, 082501 (2009)

SRG evolution of 3N interactions

- contradicts our nucleonic matter results!
- convergence problems in RG evolution of 3N interactions in oscillator basis?
- current project: evolve 3N interaction in plane-wave basis
- similar technology to solving the A=3 Schroedinger (Faddeev) equations
- allows systematic investigation of flow of low-energy couplings and provides matrix elements suitable for finite nuclei and infinite-matter calculations
- makes it possible to study the evolution of operators like densities

Correlations in nuclear systems

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

Explanation in terms of low-momentum interactions?

Correlations in nuclear systems

Higinbotham, arXiv:1010.4433

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

Explanation in terms of low-momentum interactions?

Vertex depends on the resolution! RG provides systematic way to calculate such processes at low resolution.

Scaling in nuclear systems

- scaling behavior of momentum distribution function: $\rho_{\rm NN}(q, Q = 0) \approx C_A \times \rho_{\rm NN, Deuteron}(q, Q = 0)$ at large q
- dominance of np pairs over pp pairs
- "hard" (high resolution) interaction used, calculations hard!
- dominance explained by short-range tensor forces

Nuclear scaling at low resolution

 $\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle$ factorizes into a low-momentum structure and a **universal** high momentum part if the initial operator only weakly couples low and high momenta \longrightarrow explains scaling!

key:
$$U_{\lambda}(k,q) \approx K(k)Q(q)$$
 for $k < \lambda$ and $q \gg \lambda$
factorization!

That leads to:

$$\begin{aligned} \langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle &= \int_{0}^{\lambda} dk \, dk' \int_{0}^{\infty} dq \, dq' \psi^{\dagger}(k) U_{\lambda}(k,q) O(q,q') U_{\lambda}(q',k') \psi_{\lambda}(k) \\ &\approx \int_{0}^{\lambda} dk \, dk' \psi^{\dagger}(k') \left[\int_{0}^{\lambda} dq \, dq' K(k) K(q) O(q,q') K(q') K(k') + I_{QOQ} K(k) K(k') \right] \psi^{\dagger}(k) \end{aligned}$$

with the **universal** quantity:

$$I_{QOQ} = \int_{\lambda}^{\infty} dq \, dq' Q(q) O(q, q') Q(q')$$

valid if initial operator weakly couples low and high momenta

Nuclear scaling at low resolution

 $\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle$ factorizes into a low-momentum structure and a **universal** high momentum part if the initial operator only weakly couples low and high momenta \longrightarrow explains scaling!

RG transformation of pair density operator (induced many-body terms neglected):

"simple" calculation of pair density at low resolution in nuclear matter:

Nuclear scaling at low resolution

- pair-densities approximately resolution independent
- significant enhancement of np pairs over nn pairs due to tensor force
- reproduction of previous results using a "simple" calculation at low resolution!

High-resolution experiments can be explained by low-resolution methods! Opens door to study other electro-weak processes and higher-body correlations.

Summary

- low-resolution interactions allow simpler calculations for nuclear systems
- observables invariant under changes in resolution scale, interpretation can change!
- chiral EFT provides systematic framework for constructing nuclear Hamiltonians
- 3N interactions are essential at low resolution
- nuclear matter equation of state consistent with empirical constraints
- constraints for the nuclear equation of state and radii of neutron stars