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“Branching and annihilating random walks": (BARW)

Partciles (A) diffusing (rate D) on a lattice and that undergo
reactions.

Directed Percolation:

2A — ) rate A
A — 2A rate o

Generalized Voter model:

2A — ) rate A
A— 3A rate o

@ Phase transition between active and absorbing phase?

@ Universality classes? Exponents? etc.
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Scaling out of thermal equilibrium
= Paradise for RG?

What does non equilibrium mean?

e Relaxation towards equil. (dyn. expo. z)

e Continuous phase transitions in syst. in a NESS

e Systems showing generic scaling (in a NESS)

e Scaling away from stationarity: short time critical dynamics,
coarsening,...
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Criticality out of thermal equilibrium
Systems studied:

particles diffusing and reacting
or
systems coupled to a “stochastic bath”

(deposition of particles on a surface)

4

Not necessarily an Hamitonian evolution

4

No Boltzmann weight for the stationary distribution

Y

Difficulty: need to describe the whole dynamics
Models studied: Langevin equations for a N-body system

Questions: long-time and large-scale properties of the system?
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Langevin equations

Orp(X, t) = —Flpl + N[gl¢(X, 1),

where ( is a gaussian (white) noise:

{¢(x,1)) =0,
(X, )R, 1) = 260D (X = R)o(t — t).

For BARW: (X, t) = density (of particles) field.

In general (when detailed balance is violated) the probability
distribution of the stationary states is not known.
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Averages of O(¢(t, X)) over the noise distribution:

(O(6)) = / D¢ P(C) O(6¢)

(0(9)) = [ DCP(C) [ Dbo(¢ = é¢) O()
= [ DCP(Q) [ Dpd(0:o + F(8) — N(¢)C) T(¢) O(¢)

= J DCP(C) f DoD[ig) elin =20 AN 7(6) 0(5)

J(p) = ‘det <8t+5F@5)_5N@5)C)‘ )

If 7 =1 (lto’s prescription)

Z[j,j] = / D D[i] e~ S+ zio+76

with

S16.01= [ 300+ Flo) ~ N(0)i
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Langevin equation for Directed Percolation:

2A — ) rate A
A — 2A rate o

Oep(X, 1) = DV2p + 0p — Ap? + /oo — Ap?((X, 1)
Mean-field (mass action law)
Oep(t) = o9 — Ap?

Only one stable stationary state: ¢ = o/\ = active phase.

= no phase transition... WRONG
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Kardar-Parisi-Zhang equation

M. Kardar, G. Parisi, Y.-C. Zhang, PRL (1986)

Oth(%,t) = vV2h + %(Vh)z + oC(%, 1)

@ describes:
- surface growth through ballistic deposition of particles
- disordered systems at equilibrium (directed polymers in
random media),
- Burgers equation (Vv = Vh = velocity field),
- magnetic flux lines in superconductors, etc...

o shows generic scaling : ([h(X, t) — h(0, 0)]?) ~ x>X f(t/x?).
with z + y = 2.
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A

0% 1) | Gapizie) + 2 (Vh(z,6)” + (%, ¢)

ot

@ becomes a multiplicative noise equation via the Cole-Hopf
transformation w(X, t) = exp (%h()?, t)):

A D1/2
Orw(%,t) = V2w(R, t) + =7 w(X, t) (%, t)
21,3/2

@ shows two phases for d > 2 (d + 1 space-time dimenions):
- smooth phase for small non-linearities (gaussian fluctuations)
- rough phase for large non-linearities.

@ is underlied by symmetries : (gauged) Galilean symmetry,
(gauged) shift of h, time reversal symmetry in d=1, and other
discrete symmetries (non-linearly realized).

@ is perturbatively trivial in the Cole-Hopf representation, but...

o BUT... the rough phase is unreachable perturbatively.
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Field theory associated with KPZ:
2 = [ Pthii e (~stnfi+ [Ghe7h)

Skh, A = /X{Tw(ﬁth—yAh—;‘(vhf) _Di,z}

Symmetries:

e (i) “invariance” of S under the gauged Galilean transformation
h(x) — h(X + AV(t), t) + X.0:V(t)
h(x) — h(X + A\V(t), t)
e (ii) “invariance” of S under the gauged shift symmetry
h(x) — h(x) + f(t) where f(t) is arbitrary;
e (iii) in d = 1, additional time-reversal invariance
h(t) — h(—t), h(t) — h(—t) + 2% Ah(—t).

@ and nonlinearly realized discrete symmetries...
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Aim: compute the long-time and large-distance physics =
derivative expansion?

BUT

Problem: interaction=derivative term = necessary to take into
account the momentum dependence of the two-point correlation
functions = BMW?

BUT

direct implementation is hindered by the symmetries (Ward
identities).
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Blaizot-Mendez-Wschebor (BMW) approximation in a nutshell:
Exact equation on Ff)(p, ¢) (for uniform field ¢):

% (p,0) = /0kRk(q)G(q)2-
q
(r(k:”(p, a.—p—a)G(p+q) > (—p,—a,p+q) - i1 (b, —p.q, —q))

Truncate the g-dependence of I‘f), FE:‘) — closed equation on I’E(z)

% (p. o /akRk
(r(k (p,0,—p)G(p + ) (=p.0.p) — 3T (p. —p,O,O))

Final result:

0T (p,6) = (9,1 ss(p.0) — 5 (331 £(0,0)

where

$) = / Re(q) G(p + 4. 6)G(q, &)™
q



Back to KPZ

Two difficulties to implement BMW here:

- no frequency-dependent regulator (forbidden by Galilean sym) =
is BMW justified?

- Ward identities / BMW approximation = delicate interplay

Define
p=(hy, ¢=(h)
it

5805]1 -'-&qu&ﬁQmH "‘5¢Qm+n

rimm)({qi}, Pu, (ﬁu) =

@u»@u

An example of Ward identity (gauged-Galilean):

iwaaﬁr,(f’l)(w, 5 = 6; Wi, 51) = /\51

X (rg’l)(w +wi, 1) — rg’l)(wla 51)) )
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Galilean symmetry = root of the problem
but
Galilean symmetry = part of its solution!

X (r,(-el’l)(w +wi,p1) — r,(-el’l)(wla 51)) ;

= rﬁfvl) in terms of I',(.il’l) doesn't need w = 0!
Nevertheless, difficult to implement directly BMW.

Solution: devise an ansatz close in spirit to BMW but that
circumvents the above difficulties.

A priori difficult. But...
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Geometric formulation of KPZ

Call scalar (under Galilean transfos) a quantity such that:

§F(x) = tAT - VF(x).
= fdd)_(’f is Galilean-invariant.

- h, V;V;h are scalars, V(scalar) = scalar.
- h and O¢(scalar) are not scalars.
= as in fluid mechanics build a covariant time derivative

Dy = 0y — AVh(x) -V

= Dy(scalar) = scalar.
Covariant derivative of h: D¢h(x) = d:h(x) — 5(Vh(x))?
Scalars at our disposal: h, V;V;h, D;h, V(scalar), D;(scalar).

The Kardar-Parisi-Zhang equation



Truncation:

- full momentum dependence (derivative interaction),

- full frequency dependence (comparison with exact results in
d=1),

- minimal field content.

full frequency dependence
= non polynomial dependence in D; ([)t =0: —AVp- V)
= non polynomial dependence in ¢
= minimal = minimal in ®, V2¢ and D;p.

Our Ansatz:
Melo, @] = / @ fN(—D7,—V?) Do — 32 (-D7, -V?)
X

v P e myr R
—o5 [ V2o F(=DE ~V?) & + 5 £2(~ D2, —V?) V2 .
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fAw? p?) =1
e For d =1, time reversal sym. =
(w2 p?) = P2, p?)
= only (!) one function (of w? and p?).
e For d > 1, 3 functions and 3-dimensional integrals = simplify !

Aim: zero frequency sector = neglect all w-dependence (but the
bare one).
Moreover, since £ (p? = 0) = 1 = impose £ (p?) =1, Vp.

= two functions: f¥(p?) and £,2(p?).

Two additional inputs:

e causality has to be preserved (and Ito’s prescription),

cri@=r (%) ([0 150 ) )= altewt) - )

And now, turn the crank...
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Results with the simplified ansatz (Vd):

- three fixed points: gaussian Fgw, transition Frg and strong
coupling Fsc,

- generic scaling at Fgc (no phase transition associated with this
FP),

- asymptotic safety (Frr),

- exact results for exponents recovered in d =0 and d =1 at Fgc,
- exponents not so bad at Fg¢ for d < 3.

BUT

- exact results for exponents not recovered for Frr (in d > 2)
- strange behavior of the critical exponents for d 2 3.5 = no
prediction as for the existence of an upper critical dimension.
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The d =1 case

Exact results in d = 1:
M. Praehofer and H. Spohn, PRL (2000), J. Stat. Phys. (2004)
J. Baik and E.M. Rain, J. Stat. Phys. (2000)

Experimental results: K.A. Takeuchi and M. Sano, PRL (2010)

Results with the full ansatz for d =1

fr(w?, p?) = excellent data collapse at k — 0 = fk:o(%)

4

existence of scaling
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Conclusion and outlook:

A lot remains to be done for KPZ...

Everything remains to be done for Navier-Stokes!
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