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Physics of “disordered systems”

® Systems in the presence of quenched disorder (due to
impurities, dislocations, random environment, etc, frozen on
the relevant time scale) pose new challenges to statistical
physics:
* new phases and phase transitions (spin glass, glassy phases, Griffiths phases,...)

* new phenomena (localization, pinning,...)
* slow relaxation, aging and hysteresis.

® One often needs new theoretical tools
=> Nonperturbative functional RG (NP-FRG)

® Here: focus on the equilibrium behavior of classical systems.




Random field model

® Prototypical model in theory of “disordered systems”
In the field-theoretical description (RFIM) :
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with a guenched random field drawn h(z) = 0,

from a given probability distribution
(e.g.,

Gaussian) h(z)h(y) = Ap 5D (z —y)

® Physical realizations in soft and hard condensed matter:

x
x
x*

Near critical fluids in disordered porous materials
Dilute antiferromagnets in a uniform magnetic fluid

Hysteresis in dirty magnets

*Vortex phases in disordered type-ll superconductors




Generic difficulties of
disordered systems

® Due to quenched disorder (h), one loses translational invariance.

Way out: average over disorder, but what ?, how ?

® Presence of many low-energy (low-action) “metastable states”.

® Possible influence of rare events, rare spatial regions or rare
samples.



Average over the disorder

/7 \\

[“self-averaging”, “replica trick”, etc.]

® RFIM equilibrium partition function in a given random-field
sample h :

ZnlJ] = e"rl) — / Db e—Snl8+ 1, T(@)o(@)

e IV, |J] is a random functional of the source =>
* in principle, one needs its whole probability distribution

* or equivalently, the infinite set of its disorder-averaged
cumulants:

Wi[J] = Wi [J], Wa[J1, J2] = Wi[J1]Wh[Ja]le, - -



Known results about the RFIM

® Existence of a Z> symmetry breaking transition for d>2 for the Ising
version [transition for d<4 for the O(N>2) version]. The upper critical
dimension is d =6.

® The critical behavior is associated with a zero-temperature fixed
point (thermal fluctuations are formally irrelevant) and one can
directly work at T=0.

® For a given realization of the disorder h(x), the ground state is unique
[except for rare values/configurations of the external source J(x)].



Known results about the RFIM (contd.)

Zero-temperature fixed point and its consequences

Disorder L

strength Schematic phase (and RG
flow) diagram of the RFIM

for d>2

Temperature

e Additional exponent for the temperature flow: 68 > 0

e Two distinct pair correlation functions:
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e For T>0: very slow “activated” critical dynamics, 7 ~ exp(c %),

with & the correlation length (that diverges at the critical point).



Metastable states

® At zero temperature, the equilibrium behavior of the RFIM is
determined by the ground state configuration [absolute minimum
of S, = Sg — (h + J)¢], which is solution of the stochastic field

equation:

5Sp
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® However, for low disorder strength and in the region of interest
(near the critical point), the equation has many solutions =>
many minima of the bare action (“metastable states”).

® \What is their effect on the long-distance properties ?
[Also known to go with slow relaxation, hysteresis and “glassiness”]



Parisi-Sourlas supersymmetric approach
of the RFIM

® At T=0, generating functional of the correlation functions:
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* If there is a unique solution of the stochastic field equation, usual manipulations:

Introduce auxiliary fields ngb(:z;), V(x), (),

average over disorder h (Gaussian probability distribution),

introduce a superspace with 2 Grassmann coordinates £ = (x, 0, 6)

4
and supermetric dz* = dx* + —dfd#,
Ap

a superLaplacian Agg = 5’ + Ap0y0y,
a superfield ®(z) = ¢(z) + () + ()0 + 00¢(x), super-etc...




Parisi-Sourlas supersymmetric approach
of the RFIM (contd.)

® The generating functional Z; can then be obtained from a
superfield theory with action:

Ssusy |[P] = /

X

{ — %CI)(&)ASSCI)(@ + %<D(z)2 + %M&)“}

® Invariant under SUSY (super-rotations in superspace)

=> leads to "dimensional reduction”: RFIM in d dimensions
is equivalent to the pure theory in d-2.

[ / dxdfdb f(x? + AiBee‘) — (i—l) / dd‘%f(x2)]

Beautiful, but wrong!!
Problem with multiple solutions!!




Rare events: toy model (d=0 RFIM)

+ S
. . 0SB . | |
Stochastic equation: () =J+h with \ J
0 ——
./
® For zero temperature T=0, select the ground state: [ bash
The pair correlation function for slightly different sources, L
“avalanche”
vcsn(J +0J)dasn(J —0J) = R 1
¢GS,h(J)2 +A(J)’5J‘ +O(5J2) /
has a nonanalytic behavior (a “cusp”) when J->0 due to the “avalanches”.

e For a small 7>0, Boltzmann weighting of the minima (e~ "7 )
The cusp is rounded in a “thermal boundary layer”
J
< P(J+0J+h)><d(J—06J+h)>=<¢(J+h) >2+Tf(J,|TJ‘)+---

® |SSUE: Does this persist at long distance when d>0 ?



Long-standing puzzles concerning
random-field systems

e Critical behavior: what is the way out of dimensional
reduction?

® \What is the phase diagram of the d-dimensional
random-field O(N) model in the whole (N,d) plane?



Why does one need a
nonperturbative functional RG ?¢

® RG, because one is interested in the long-distance properties near to
the critical point; in particular, the “metastable states” of potential
relevance are not those of the bare action but those of a scale-
dependent renormalized functional;

® Functional, because the influence of the rare events (avalanches and
droplets) can only be described through a singular dependence of the
cumulants of the renormalized disorder on their arguments;

® Nonperturbative, because standard perturbation theory completely fails
(dimensional reduction), relevant dimensions are far from d=6, disorder
grows strong under coarse graining.




Program for RG study of RFIM

[Search for the proper T=0 IR (critical) fixed point]

® Select with high probability the ground state at the running IR scale k
among the solutions if several of them and ensure that only the
ground state is considered when k -> 0.

® Describe full functional dependence of cumulants of renormalized
disorder and allow for nonanalytical dependence on their
arguments.

e Start the RG flow with a “regularized” stochastic field equation
having a unique solution.

e Use a nonperturbative truncation and be able to recover dimensional
reduction if it has a range of validity.

=> NP-FRG in a superfield setting



Superfield formalism for the RFIM

® Several copies + a weighting factor => Generating functional:

(8) 553 Pl 0°Sp[dal
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Average over disorder generates cumulants with full functional dependence:

Z{Ja, Ju ¥ = Hewhwa,fa] _ o WhlJasJal4d Ty WhldarJa) Wiy, Jo] et

a

® Introduce superfields and a “curved” Grassmannian space
0) =¢+ 0y +90+00¢; | = dodo 00
0(0) = o+ 00+ 70+ 00; [ = [ [ avan(1 + o)
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Supertfield formalism (contd.)

e Add coupling to supersources Z Ta(0,2)Pu(0,2) -> W(ﬁ) [{ja}]

CU

+ Legendre transform -> Effective action I'(%) { P, }]

® The action is invariant under a large group of symmetries and

supersymmetries (S, between copies, global Z, and Euclidean translations
+ rotations, isometries of the curved Grassmann subspace copy by copy).

® The expansion in increasing number of sums over copies generates the
“cumulant expansion” of the 1PI generating functional (effective action):

PO {d,}] = er) o] — = Z ) [@4,, @ay) + -

a’laa'Q




NP-FRG in superfield formalism

e Add an IR regulator to the action:
As{lea = 52 [ RN IERFAT AN
33' 33'2
Ric.ap(x1,25) = 5Q1,Q2}A%k(q2) + Ri(¢%) : suppresses fluctuations of ¢ field and random field

e ERGE for the effective average action at scale k:

oY [ @,}] = Z/ O R (21,29) (T {1 @0} + Ri) 3y )0

Ly Y Loy

® Through the expansion of F,(f) {®,}] in increasing number of copies:

Hierarchy of coupled ERGE’s for the cumulants (functionals of the

superfields): () (8)
Okl 1 [@1] =+, Okl 5[®1, @] = -+, etc




“Grassmannian ultralocality”
and superrotational invariance

® Property of the generating functionals when a unique solution of the
stochastic equation is included:

“Grassmannian ultralocality”: W}(LB) T = /W[j(Q)]
o

® \When 8 — oo, “ultralocality” (UL) becomes exact, with the pth
cumulant of the effective average action given by (more later!)

)

a,

/ / (F(UL) Oa, )a cee (I’ap (Hap )] + NUL Corrections)

® \When “Grassm. UL”, B drops out of the FRG equations.
Then, for supersources that reduce the theory to a 1-copy problem,
the theory is invariant under superrotations (SUSY)

=> Ward-Takahashi (WT) identities.




NP-FRG and SUSY breaking

® Grassm. ultralocality => hierarchy of ERGE'’s for the cumulants with
physical field arguments (® = ¢):

oTilo) = 50, Tr{ [P 6] + Be] ' 15016, 0] - Rl }
Ot L'k2|@1, o] = -+

[t = In(k/A)]

111 Recall: The auxiliary parameter B then drops out of the ERGE’s !!!

® As a result, superrotational invariance for 1 copy is a priori preserved

along the RG flow: From the WT identities, one can show that it leads
(nonperturbatively) to dimensional reduction.

® \What can go wrong ?

* Spontaneous breaking of superrotation invariance:

some 1Pl vertex blows up when copy fields become equal.
* Dimension reduction is broken when a cusp

11 11
Fl(c,Q)(Spla p2) — FE{,2>(¢17 p1) ~ lp2 — 1| as @2 — ¥
appears at a finite scale k;.




SUSY-compatible approximation and RG flow

® Ansatz for effective average action (under “Grassm. ultralocality”):

Pald) = [ [Ue(0(@) + 524(6(2) @,0())*]

Fk2[¢17 ¢2] — / Vk(gbl (37)7 ¢2($)), Lk p>2 =0

T

+ Regulators: Rk — Zkkz r(q2/k2), Rk — —(Ak/Zk)8q2R(q2)
| SUSY WT identity: A=A Zx ]

® |ntroduce scaling dimensions for T=0 fixed point (critical). Then,

Orug(p) = -+ e = —O0y Zy,

Ouz(p) = Me = 2Nk + O Ay

00k (1, p2) = atvl(gll)(

(7017902):...

® |f no linear cusp indx(¢1, ¥2), then 0:0k(p, ) = Orzr() (WT id.)
and exact dim. reduction follows: found for d > dpr= 5.1

® Numerical resolution on a grid.




Results

Above dpr = 5.1: no cusp in 0x(¢1, p2) .
Below dpr: cusp in dk(¢1, p2)and SUSY breaking
in a finite RG time.

A second order derivative of 0k blows
up in a finite RG time for d<dpr (red

curve), not for d>dpr (blue curve) Flow of the dimensionless second
=> SUSY breaking cumulant dxin d=4
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Results: Critical exponentsand 7)

Breakdown of dimensional reduction appears continuously in
dimension d

® Dimensional reduction: 7 =17 [: n(pure’d_z)]
eBelow dpr: 71 > 1

1 Very good agreement
1 with “best estimates”:
In d=3,
n=0.57 +0.05
| 10.51+£0.04]

: 71=1.08 + 0.05
[1.02-1.10]




Role of the (auxiliary) temperature

® |f one adds the first “non-ultralocal” corrections, one finds that they
go to finite fixed-point values and that the flow of the ultralocal
quantities is generically of the form
k@

D01 (01, p2) = By (01, 02) + (?) OB (1, 00)

® The second term drops out when (1/B)=0 (zero auxiliary temperature)
and one is back to the purely “ultralocal” contributions.

® When B finite and k -> 0, nonuniform convergence to the “ultralocal”
cuspy fixed point: cusp in dx(¢1, ¥2) is rounded in a thermal
boundary layer in |1 — @2 /K .

® The boundary layer is related to the presence of rare “droplet”
excitations.



Results: N-d phase diagram of the RFO(N)M
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Region IV:  Weak non-analyticity (at fixed pt.); dim. red. predictions O.K.

Regions | and Il:  Spontaneous SUSY breaking at finite RG scale;

cusp in renormalized second cumulant; breakdown of dim. red. (Il: QLRO)

Region II: No phase transition



Conclusion

® The description of the long-distance physics of systems with
quenched disorder requires special theoretical tools to account
for loss of translational invariance/average over disorder, rare
events, metastable states, etc...

® NP-FRG in a superfield setting (with introduction of many
copies and of a weighting factor to select the proper solution)
solves the 30-year-old pending problems concerning the critical
behavior in random field systems.

® |t could be a useful formalism for other problems described by
a stochastic field equation with multiple solutions (metastable
states in glasses, shocks in fluid turbulence, Gribov copies in
non-Abelian gauge theories,...).




Results (contd

Below dpr = 5.1: cuspy fixed point for
6k $1, P2

Dimensionless second cumulant at the fixed point in d=3
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Results (contd)

Below dpr: cusp in 6, (p1, p2) & spontaneous SUSY breaking

Breakdown of the (SUSY) WT identity at the fixed point in d=3

| | |
0 0.02 0.04 0.06 0.08



Results (contd.)

Above Npr =18: no cusp and dimensional reduction
Below Npr=18: cusp and breakdown of dimensional reduction

Anomalous dimensions in d=4+€ (1-loop exact FRG)
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Results: Critical exponents n and 1
(contd.)

Optimization of the cut-off (to ensure a better stability of the results)




