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Physics of〝disordered systems″

•Systems in the presence of quenched disorder (due to 
impurities, dislocations, random environment, etc, frozen on 
the relevant time scale) pose new challenges to statistical 
physics:

✴ new phases and phase transitions (spin glass, glassy phases, Griffiths phases,...)
✴ new phenomena (localization, pinning,...)
✴ slow relaxation, aging and hysteresis.

•One often needs new theoretical tools
=> Nonperturbative functional RG (NP-FRG)

•Here: focus on the equilibrium behavior of classical systems.



Random field model

•Physical realizations in soft and hard condensed matter:
✴Near critical fluids in disordered porous materials
✴Dilute antiferromagnets in a uniform magnetic fluid
✴Hysteresis in dirty magnets
✴Vortex phases in disordered type-II superconductors

•Prototypical model in theory of ‶disordered systems″
In the field-theoretical description (RFIM) :

with a quenched random field drawn 
from a given probability distribution

(e.g., Gaussian)

Sh[φ] = SB [φ]−
�
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ddx
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φ(x)2 +

u
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φ(x)4
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h(x) = 0,

h(x)h(y) = ∆B δ(d)(x− y)



Generic difficulties of 
disordered systems

• Due to quenched disorder (h), one loses translational invariance.

Way out: average over disorder, but what ?, how ?

• Presence of many low-energy (low-action) “metastable states”.

• Possible influence of rare events, rare spatial regions or rare 
samples.



Average over the disorder
[‶self-averaging″, ‶replica trick″, etc.]

•           is a random functional of the source =>

✴ in principle, one needs its whole probability distribution

✴ or equivalently, the infinite set of its disorder-averaged 
cumulants:

W1[J ] = Wh[J ], W2[J1, J2] = Wh[J1]Wh[J2]|c, · · ·

Wh[J ]

•RFIM equilibrium partition function in a given random-field 
sample h :

Zh[J ] = eWh[J] =

�
Dφ e−Sh[φ]+

�
x J(x)φ(x)



Known results about the RFIM

• Existence of a Z2 symmetry breaking transition for d>2 for the Ising 
version [transition for d<4 for the O(N>2) version]. The upper critical 
dimension is dUC=6.

• The critical behavior is associated with a zero-temperature fixed 
point (thermal fluctuations are formally irrelevant) and one can 
directly work at T=0.

• For a given realization of the disorder h(x), the ground state is unique 
[except for rare values/configurations of the external source J(x)].



Known results about the RFIM (contd.)
Zero-temperature fixed point and its consequences

density f can be written in the form f = Jf̃(T/J, h/J,H/J). Let us imagine to carry
out the RNG coarse–graining transformation, with length scale factor b, corresponding to a
reduction in the number of degrees of freedom by a factor bd. The transformation generates a
flow in the space of the naive scaling fields T/J, h/J , and H/J , which eventually terminates
in one of the fixed points of the system. The existence of three fixed point will be assumed
(Fig. 4), in addition to the trivial, high temperature fixed point:
(i) A totally unstable “thermal” fixed point C at T = Tc, H = h = 0 (the random field is a
relevant perturbation, see our discussion in 3.2) .
(ii) A fixed point R at T = H = 0 and h = hR which is unstable in two, but stable in one
directions and is therefore a critical point.
(iii) A totally stable fixed point F at T = h = H = 0, which corresponds to the low
temperature phase for d > dl.

C

F

H/J

T/J

h/J

R
hR

Figure 4: Schematic renormalization group flow of the random field Ising model

In general the RNG procedure generates also new terms in the Hamiltonian. We will
assume, that these terms are irrelevant in the RNG–sense and can therefore be neglected.

In order to calculate the critical behavior we have to linearize the RNG flow close to
the fixed point R. The eigenvalues and eigenvectors of the linearized RNG–transformation
deliver the critical exponents and scaling fields. Phenomenological arguments concerning
the RNG flow suggest

T

J
, τ =

1

J
(h − hR) + c

T

J
and

H

J
(23)

as the scaling fields. Close to the fixed point R J , τ and H transform under the RNG
coarse graining as

J → J ′ = J b yJ

τ → τ ′ = τ b yτ

H → H ′ = H b yH .
(24)
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Temperature0

Disorder
 strength Schematic phase (and RG 

flow) diagram of the RFIM 
for d>2

< φ(x) >< φ(x�) > ∼ 1

|x− x�|d−4+η̄
, with θ = 2 + η − η̄,

< φ(x)φ(x�) > − < φ(x) >< φ(x�) > ∼ T

|x− x�|d−2+η

• Additional exponent for the temperature flow:  

• Two distinct pair correlation functions:

• For T>0: very slow “activated” critical dynamics,                      ,

with    the correlation length (that diverges at the critical point).

θ > 0

ξ

τ ∼ exp(c ξθ)



Metastable states

• What is their effect on the long-distance properties ?
[Also known to go with slow relaxation, hysteresis and ‶glassiness″]

• At zero temperature, the equilibrium behavior of the RFIM is 
determined by the ground state configuration [absolute minimum
of                                  ], which is solution of the stochastic field 
equation:

• However, for low disorder strength and in the region of interest 
(near the critical point), the equation has many solutions => 
many minima of the bare action (“metastable states”).

δSB [φ]
δφ(x) = h(x) + J(x)

Sh = SB − (h+ J)φ



•At T=0, generating functional of the correlation functions:

✴ If there is a unique solution of the stochastic field equation, usual manipulations: 

Introduce auxiliary fields                               ,

average over disorder h (Gaussian probability distribution),

introduce a superspace with 2 Grassmann coordinates                       

and supermetric                                   ,

a superLaplacian                                        ,

a superfield                                                                         , super-etc...

x = (x, θ, θ)

Φ(x) = φ(x) + θψ(x) + ψ(x)θ + θθφ̂(x)

φ̂(x), ψ(x), ψ(x)

∆SS = ∂2
µ +∆B∂θ∂θ

dx2 = dx2 +
4

∆B
dθ̄dθ

Parisi-Sourlas supersymmetric approach
of the RFIM

Zh[J, Ĵ ] =

�
Dφ δ

�δSB [φ]

δφ
− h− J

�����
δ2SB [φ]

δφδφ

���� e
�
x Ĵ(x)φ(x)



Parisi-Sourlas supersymmetric approach
of the RFIM (contd.)

•The generating functional       can then be obtained from a 
superfield theory with action:

• Invariant under SUSY (super-rotations in superspace)
=> leads to ‶dimensional reduction″: RFIM in d dimensions 
is equivalent to the pure theory in d-2.

Beautiful, but wrong!!
Problem with multiple solutions!!

SSUSY [Φ] =

�

x

�
− 1

2
Φ(x)∆SSΦ(x) +

τ

2
Φ(x)2 +

u

4!
Φ(x)4

�

Zh

� �
ddxdθdθ̄ f(x2 +

4

∆B
θθ̄) =

�
4π

∆B

��
dd−2x f(x2)

�



Rare events: toy model (d=0 RFIM)

ϕ

SB

• For zero temperature T=0, select the ground state:

The pair correlation function for slightly different sources,

has a nonanalytic behavior (a “cusp”) when J->0 due to the “avalanches”.

• For a small T>0, Boltzmann weighting of the minima (                   ):

The cusp is rounded in a “thermal boundary layer”

• ISSUE: Does this persist at long distance when d>0 ?

J

ϕGS,h

0
“avalanche”

-h

< φ(J + δJ + h) >< φ(J − δJ + h) > = < φ(J + h) >2 + T f(J,
|δJ |
T

) + · · ·

e−
SB(φ)−(J+h)φ

T

φGS,h(J + δJ)φGS,h(J − δJ) =

φGS,h(J)2 +A(J)|δJ |+O(δJ2)

Stochastic equation:                                with
δSB(φ)

δφ
= J + h



Long-standing puzzles concerning 
random-field systems

•What is the phase diagram of the d-dimensional 
random-field O(N) model in the whole (N,d) plane?

•Critical behavior: what is the way out of dimensional 
reduction?



Why does one need a 
nonperturbative functional RG ?

• RG, because one is interested in the long-distance properties near to 
the critical point; in particular, the “metastable states” of potential 
relevance are not those of the bare action but those of a scale-
dependent renormalized functional;

• Functional, because the influence of the rare events (avalanches and 
droplets) can only be described through a singular dependence of the 
cumulants of the renormalized disorder on their arguments;

• Nonperturbative, because standard perturbation theory completely fails 
(dimensional reduction), relevant dimensions are far from d=6, disorder 
grows strong under coarse graining.



• Select with high probability the ground state at the running IR scale k 
among the solutions if several of them and ensure that only the 
ground state is considered when k -> 0.

• Describe full functional dependence of cumulants of renormalized 
disorder and allow for nonanalytical dependence on their 
arguments.

• Start the RG flow with a ‶regularized″ stochastic field equation 
having a unique solution.

• Use a nonperturbative truncation and be able to recover dimensional 
reduction if it has a range of validity.

=> NP-FRG in a superfield setting

Program for RG study of RFIM
[Search for the proper T=0 IR (critical) fixed point]



Superfield formalism for the RFIM

Φ(θ) = φ+ θψ + ψθ + θθφ̂ ;

�

θ
=

� �
dθdθ(1 + βθθ)

• Several copies + a weighting factor => Generating functional:

Average over disorder generates cumulants with full functional dependence:

• Introduce superfields and a ‶curved″ Grassmannian space

=>

Zh[{Ja, Ĵa}] =
�

a

eWh[Ja,Ĵa] = e
�

a Wh[Ja,Ĵa]+ 1
2

�
ab Wh[Ja,Ĵa]Wh[Jb,Ĵb]|c+···

Z(β)
h [{Ja, Ĵa}] =

�

a

�
Dφaδ

�δSB [φa]

δφa
− h− Ja

�
det

�
δ2SB [φa]

δφaδφa

�

× e
�
x Ĵa(x)φa(x) e−β

�
SB [φa]−

�
x[h(x)+Ja(x)]φa(x)

�

S1 =

�

x

�
1

2

�
∂µΦa(θ, x)

�2
+ UB(Φa(θ, x)

�
; S2 =

�

x
∆B Φa(θ1, x)Φb(θ2, x)

S(β)[{Φa}] =
�

a

�

θ
S1[Φa(θ)] +

1

2

�

ab

� �

θ1θ2

S2[Φa(θ1),Φa(θ2)]



• Add coupling to supersources                                      ->

+ Legendre transform -> Effective action 

• The action is invariant under a large group of symmetries and 
supersymmetries (Sn between copies, global Z2 and Euclidean translations 
+ rotations, isometries of the curved Grassmann subspace copy by copy).

• The expansion in increasing number of sums over copies generates the 
‶cumulant expansion″ of the 1PI generating functional (effective action):

�

a

�

θ,x
Ja(θ, x)Φa(θ, x)

Γ(β)[{Φa}]
W(β)[{Ja}]

Superfield formalism (contd.)

Γ(β)[{Φa}] =
�

a1

Γ(β)1 [Φa1 ]−
1

2

�

a1,a2

Γ(β)2 [Φa1 ,Φa2 ] + · · ·



NP-FRG in superfield formalism

• Add an IR regulator to the action:

• ERGE for the effective average action at scale k:

• Through the expansion of                   in increasing number of copies:

Hierarchy of coupled ERGE’s for the cumulants (functionals of the 
superfields):

: suppresses fluctuations of ϕ field and random fieldRk,ab(x1, x2) = δθ1,θ2
�Rk(q

2) + �Rk(q
2)

∂kΓ
(β)
k [{Φa}] =

1

2

�

ab

�

x1

�

x2

∂kRk,ab(x1, x2)(Γ
(2)
k [{Φa}] +Rk)

−1
(b,x2)(a,x1)

∆S(β)
k [{Φa}] =

1

2

�

ab

�

x1

�

x2

Φa(x1)Rk,ab(x1, x2)Φb(x2)

Γ(β)
k [{Φa}]

∂kΓ
(β)
k,1 [Φ1] = · · · , ∂kΓ(β)k,2 [Φ1,Φ2] = · · · , etc



• Property of the generating functionals when a unique solution of the 
stochastic equation is included:

  ‶Grassmannian ultralocality″:

• When            , ‶ultralocality″ (UL) becomes exact, with the pth 
cumulant of the effective average action given by (more later!)

• When ‶Grassm. UL″, β drops out of the FRG equations.
Then, for supersources that reduce the theory to a 1-copy problem, 
the theory is invariant under superrotations (SUSY) 
=> Ward-Takahashi (WT) identities.

β → ∞

‶Grassmannian ultralocality″
and superrotational invariance

W(β)
h [J ] =

�

θ
W [J (θ)]

Γ(β)k,p[Φa1 , ...,Φap ] =�

θa1

...

�

θap

�
Γ(UL)
k,p [Φa1(θa1), ...,Φap(θap)] +NUL corrections

�



NP-FRG and SUSY breaking
• Grassm. ultralocality => hierarchy of ERGE’s for the cumulants with 

physical field arguments             :

!!! Recall: The auxiliary parameter β then drops out of the ERGE’s !!!

• As a result, superrotational invariance for 1 copy is a priori preserved 
along the RG flow: From the WT identities, one can show that it leads 
(nonperturbatively) to dimensional reduction.

• What can go wrong ?
✴ Spontaneous breaking of superrotation invariance: 

some 1PI vertex blows up when copy fields become equal.
✴ Dimension reduction is broken when a cusp

appears at a finite scale kL.

∂tΓk1[φ] =
1

2
�∂t Tr

��
Γ(2)
k1 [φ] + R̂k

�−1�
Γ(11)
k2 [φ,φ]− �Rk

��

∂tΓk2[φ1,φ2] = · · ·
[t = ln(k/Λ)]

asΓ(11)
k,2 (ϕ1,ϕ2)− Γ(11)

k,2 (ϕ1,ϕ1) ∼ |ϕ2 − ϕ1| ϕ2 → ϕ1

(Φ ≡ φ)



• Ansatz for effective average action (under ‶Grassm. ultralocality″):

+ Regulators:

• Introduce scaling dimensions for T=0 fixed point (critical). Then,

• If no linear cusp in                , then                                  (WT id.)
•and exact dim. reduction follows: found for d > dDR ≃ 5.1

• Numerical resolution on a grid.

Γk1[φ] =

�

x

�
Uk(φ(x)) +

1

2
Zk(φ(x))(∂µφ(x))

2
�

Γk2[φ1,φ2] =

�

x
Vk(φ1(x),φ2(x)), Γk,p>2 = 0

[ SUSY WT identity: Δk=ΔB Zk ]

ηk = −∂tZk

η̄k = 2ηk + ∂t∆k

∂tu
�
k(ϕ) = · · ·

∂tzk(ϕ) = · · ·
∂tδk(ϕ1,ϕ2) = ∂tv

(11)
k (ϕ1,ϕ2) = · · ·

∂tδk(ϕ,ϕ) = ∂tzk(ϕ)δk(ϕ1,ϕ2)

R̂k = Zkk
2 r(q2/k2), R̃k = −(∆k/Zk)∂q2R̂(q2)

SUSY-compatible approximation and RG flow



Results

21

Above dDR ≃ 5.1: no cusp in               .
Below dDR: cusp in               and SUSY breaking 
                  in a finite RG time.

δk(ϕ1,ϕ2)

δk(ϕ1,ϕ2)

Flow of the dimensionless second 
cumulant δk in d=4

symmetry), the flow equations must be recast in a scaled
form. The fixed point being a zero-temperature one [1,8],
the spatial decay of the correlations [see below Eq. (11)] at
criticality is now characterized by two ‘‘anomalous dimen-
sions’’ ! and !!:

P̂ðrÞ # r$ðd$2þ!Þ; ~PðrÞ # r$ðd$4þ !!Þ; (14)

with ! & !! & 2!, and one has to introduce scaling di-
mensions involving an additional critical exponent [6]. The
resulting equations are generalizations of those shown in
Ref. [6] and are not displayed here. We have solved these
coupled partial differential equations numerically, looking
for the proper (critical) fixed point as a function of dimen-
sion (more details will be given elsewhere). This procedure
is numerically very demanding and requires handling 3
coupled equations for 2 functions of 1 variable (Uk and Zk)
and 1 function of 2 variables ("k).

An important property of the present theory is that if
in the limit "2 ! "1, "kð"1;"2Þ ¼ "k0ð"Þ þ"k2ð"Þ(
ð"1 $"2Þ2 þ ) ) ) with " ¼ ð"1 þ"2Þ=2, then the flow
of "k0ð"Þ coincides with that of Zkð"Þ: This is precisely
the WT relation derived from Eq. (13), and DR exactly
follows. On the other hand, a spontaneous breaking of the
SUSY and of the associated WT identity occurs whenever
"k2ð"Þ diverges and "k has a cusplike singularity in the
form "kð"1;"2Þ ¼ "k0ð"Þ þ "kað"Þj"1 $"2jþ ) ) ) as
"2 ! "1.

We find that the solution without a cusp is stable and that
!ðdÞ ¼ !!ðdÞ ¼ !Isingðd$ 2Þ, in agreement with the DR
prediction, above a critical dimension dDR ’ 5:1. For d <
dDR, we obtain a once unstable ‘‘cuspy’’ fixed point (see
Fig. 1) and DR is broken: The exponents! and !! bifurcate,
with !ðdÞ< !!ðdÞ (see Fig. 2). In d ¼ 3, we find ! ’ 0:57,
!! ’ 1:08, and in d ¼ 4, ! ’ 0:24, !! ’ 0:40: This is in
good agreement with the existing estimates [14,15], which
gives support to the whole scenario (the results are also
1-loop exact near d ¼ 6). In addition, the continuous
variation of ! and !! with d and the existence of a critical
dimension above which !ðdÞ ¼ !!ðdÞ contradict the claim

that the two exponents are always related by a fixed ratio
!!ðdÞ ¼ 2!ðdÞ [16].
In conclusion, the present study provides key pieces for

a complete resolution of the long-standing puzzles associ-
ated with the critical behavior of the RFIM. In doing so, we
have developed tools that may prove useful in other con-
texts where the need to select a unique solution of a
stochastic field equation arises, as in ‘‘glassy’’ systems,
turbulence, or non-Abelian gauge field theories.
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FIG. 1 (color online). NP-FRG flow of the dimensionless
cumulant #kð’þ y; ’$ yÞ in d ¼ 4< dDR for ’ ¼ 0 and for
initial conditions close to the critical point. A linear cusp in jyj
appears at a finite RG ‘‘time’’ jtj ¼ logð#=kÞ.
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FIG. 2 (color online). Anomalous dimensions ! and !! versus
d. DR is observed above dDR ’ 5:1. ! and !! satisfy the required
upper ( !! & 2!) and lower bounds (red dashed lines) [1]. Crosses
correspond to simulation results [14,15]. The region just below
dDR is unfortunately numerically difficult to access.
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SUSY is broken at a finite IR scale along the RG flow
and a breakdown of dimensional reduction takes place.
By using the procedure (1) detailed in the above subsec-
tion, we have numerically located this critical dimension
as dDR ! 5.1 ± 0.1 (the precise value has a residual de-
pendence on the chosen cutoff function). Note that the
value dDR ! 5.1 obtained here is consistent with the
value found in our previous, and somewhat cruder, NP-
FRG approach of the RFO(N)M when extrapolating the
transition line dDR(N) down to N = 1 (see Figure 4 of
paper II2).

For initial conditions of the RG flow at or near the criti-
cal point, the second derivative δk,2(ϕ) = ∂2

yδk(ϕ+y,ϕ−
y)|y=0 blows up at a finite RG “time” tL = log(kL/Λ)
for d < dDR, whereas it stays finite up to the fixed point
for d > dDR. We illustrate the difference of behavior
between these two cases in Fig. 1 for a field configura-
tion ϕ = 0. The divergence of the full function δk,2(ϕ)

!2000

!1500

!1000

!500

 0

 0  1  2  3  4  5  6  7

|t|

|tL|

δk,2(0)

FIG. 1: NP-FRG flow of δk,2(0) in the regime where SUSY is
valid. The initial conditions at k = Λ (i.e., t = 0) for u′

k(ρ)
and zk(ρ) = δk,0(ρ), with ρ = ϕ2/2, are taken at the fixed-
point solution, u′

∗(ρ) and z∗(ρ) [∂tu
′
k(ρ)|∗ = ∂tzk(ρ)|∗ = 0],

and those for δk,0(ρ) and δk,2(ρ) are chosen as δk=Λ,0(ρ) =
z∗(ρ) and δk=Λ,2(ρ) = 0. The upper (color online blue) curve
corresponds to d = 5.2 > dDR and one observes that δk,2(0)
tends to a finite fixed-point value. The lower (color online
red) curve corresponds to d = 5 < dDR shows a divergence at
a finite RG “time” tL.

when d < dDR is shown in Fig. 2. (Due to the Z2 sym-
metry, it is more convenient to represent the functions
in terms of ρ = ϕ2/2.) We find, as can be anticipated
from an analysis of the NP-FRG equations for u′

k(ϕ),
δk,0(ϕ) and δk,2(ϕ) that the latter stays finite at d = dDR

and that its fixed-point value for d → d+
DR behaves as

δ∗,2(ϕ)|d − δ∗,2(ϕ)|dDR
∝

√
d − dDR, as seen in Fig. 3.

When considering dimensions smaller than dDR, one
must study the full dependence of the function δk(ρ =
ϕ2/2, y). We show in Fig. 4 the evolution of this function
for ρ = 0. Starting from a constant function, one can
clearly see that a linear cusp in y appears in a finite RG
time |tL|, close to 0.7 for the case shown.

The appearance of a cusp along the flow leads to a
breakdown of the superrotational invariance and of the
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FIG. 2: NP-FRG flow of δk,2(ρ) = ∂2
yδ(ρ, y)|y=0 for d = 5 <

dDR. The initial conditions at k = Λ (i.e., t = 0) for u′
k(ρ) and

zk(ρ) are taken at the fixed-point solution, u′
∗(ρ) and z∗(ρ),

and those for δk,0(ρ) and δk,2(ρ) are chosen as δk=Λ,0(ρ) =
z∗(ρ) and δk=Λ,2(ρ) = 0. One observes that the divergence
first takes place for small values of ρ.
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FIG. 3: Fixed-point solution δ∗,2(ρ) for dimensions d > dDR.
Note the square-root behavior

√
d − dDR as a function of di-

mension.

associated WT identities. This is shown for the fixed
point in d = 3 in Fig 5: there, z∗(ρ) &= δ∗,0(ρ) ≡ δ∗(ρ, 0),
which implies a breaking of the WT identity in Eq. (27).
The different asymptotic behaviors at large ρ are eas-
ily deduced from Eqs. (34,35), from which we show that
z∗(ρ) ∼ ρ−η/(d−4+η̄) and δ∗(ρ, 0) ∼ ρ−(2η−η̄)/(d−4+η̄). In
d = 3, 2η − η̄ is very small, which implies that the func-
tion δ∗(ρ, 0) decreases slowly to 0.

We also display in Figs. 6-7 the fixed-point solutions
u′
∗(ρ) and z∗(ρ) for different dimensions. One can see

that the lower the dimension the steeper the curves. This
means that for a numerical study of the critical proper-
ties in low dimensions, we need to discretize the field de-
pendence in the NP-FRG equations with a small mesh,
which entails a large number of points. The numerical
integration is therefore more difficult and even becomes
intractable in practice. Finally, we show in Fig. 8 the full
dependence of the fixed-point solution δ∗(ρ, y).

We now turn to the results concerning the critical ex-
ponents. We begin with the anomalous dimensions η
and η̄ which are determined at the (critical) fixed point.
Their dependence on the spatial dimension d is shown in

A second order derivative of δk blows 
up in a finite RG time for d<dDR (red 

curve), not for d>dDR (blue curve)
=> SUSY breaking

d=5.2

d=5.0
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symmetry), the flow equations must be recast in a scaled
form. The fixed point being a zero-temperature one [1,8],
the spatial decay of the correlations [see below Eq. (11)] at
criticality is now characterized by two ‘‘anomalous dimen-
sions’’ ! and !!:

P̂ðrÞ # r$ðd$2þ!Þ; ~PðrÞ # r$ðd$4þ !!Þ; (14)

with ! & !! & 2!, and one has to introduce scaling di-
mensions involving an additional critical exponent [6]. The
resulting equations are generalizations of those shown in
Ref. [6] and are not displayed here. We have solved these
coupled partial differential equations numerically, looking
for the proper (critical) fixed point as a function of dimen-
sion (more details will be given elsewhere). This procedure
is numerically very demanding and requires handling 3
coupled equations for 2 functions of 1 variable (Uk and Zk)
and 1 function of 2 variables ("k).

An important property of the present theory is that if
in the limit "2 ! "1, "kð"1;"2Þ ¼ "k0ð"Þ þ"k2ð"Þ(
ð"1 $"2Þ2 þ ) ) ) with " ¼ ð"1 þ"2Þ=2, then the flow
of "k0ð"Þ coincides with that of Zkð"Þ: This is precisely
the WT relation derived from Eq. (13), and DR exactly
follows. On the other hand, a spontaneous breaking of the
SUSY and of the associated WT identity occurs whenever
"k2ð"Þ diverges and "k has a cusplike singularity in the
form "kð"1;"2Þ ¼ "k0ð"Þ þ "kað"Þj"1 $"2jþ ) ) ) as
"2 ! "1.

We find that the solution without a cusp is stable and that
!ðdÞ ¼ !!ðdÞ ¼ !Isingðd$ 2Þ, in agreement with the DR
prediction, above a critical dimension dDR ’ 5:1. For d <
dDR, we obtain a once unstable ‘‘cuspy’’ fixed point (see
Fig. 1) and DR is broken: The exponents! and !! bifurcate,
with !ðdÞ< !!ðdÞ (see Fig. 2). In d ¼ 3, we find ! ’ 0:57,
!! ’ 1:08, and in d ¼ 4, ! ’ 0:24, !! ’ 0:40: This is in
good agreement with the existing estimates [14,15], which
gives support to the whole scenario (the results are also
1-loop exact near d ¼ 6). In addition, the continuous
variation of ! and !! with d and the existence of a critical
dimension above which !ðdÞ ¼ !!ðdÞ contradict the claim

that the two exponents are always related by a fixed ratio
!!ðdÞ ¼ 2!ðdÞ [16].
In conclusion, the present study provides key pieces for

a complete resolution of the long-standing puzzles associ-
ated with the critical behavior of the RFIM. In doing so, we
have developed tools that may prove useful in other con-
texts where the need to select a unique solution of a
stochastic field equation arises, as in ‘‘glassy’’ systems,
turbulence, or non-Abelian gauge field theories.
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FIG. 1 (color online). NP-FRG flow of the dimensionless
cumulant #kð’þ y; ’$ yÞ in d ¼ 4< dDR for ’ ¼ 0 and for
initial conditions close to the critical point. A linear cusp in jyj
appears at a finite RG ‘‘time’’ jtj ¼ logð#=kÞ.
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FIG. 2 (color online). Anomalous dimensions ! and !! versus
d. DR is observed above dDR ’ 5:1. ! and !! satisfy the required
upper ( !! & 2!) and lower bounds (red dashed lines) [1]. Crosses
correspond to simulation results [14,15]. The region just below
dDR is unfortunately numerically difficult to access.
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Very good agreement 
with ‶best estimates″:

In d=3,
=0.57 ± 0.05
[0.51±0.04]
=1.08 ± 0.05
[1.02-1.10]

η

η̄

η η̄

Breakdown of dimensional reduction appears continuously in 
dimension d

•Dimensional reduction:
•Below dDR:

η̄ = η
η̄ > η

[= η(pure,d−2)]



Role of the (auxiliary) temperature

• If one adds the first ‶non-ultralocal″ corrections, one finds that they 
go to finite fixed-point values and that the flow of the ultralocal 
quantities is generically of the form

• The second term drops out when (1/β)=0 (zero auxiliary temperature) 
and one is back to the purely ‶ultralocal″ contributions.

• When β finite and k -> 0, nonuniform convergence to the ‶ultralocal″ 
cuspy fixed point: cusp in                  is rounded in a thermal 
boundary layer in                     . 

• The boundary layer is related to the presence of rare ‶droplet″ 
excitations. 

∂tδk(ϕ1,ϕ2) = β(UL)
δk

(ϕ1,ϕ2) +

�
kθ

β

�
β(NUL)
δk

(ϕ1,ϕ2)

δk(ϕ1,ϕ2)
|ϕ1 − ϕ2|/kθ



Region IV:       Weak non-analyticity (at fixed pt.); dim. red. predictions O.K.

Regions I and II:     Spontaneous SUSY breaking at finite RG scale; 

cusp in renormalized second cumulant; breakdown of dim. red.  (II: QLRO)

Region III:       No phase transition
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Results: N-d phase diagram of the RFO(N)M

dDR ≈ 5.1



• The description of the long-distance physics of systems with 
quenched disorder requires special theoretical tools to account 
for loss of translational invariance/average over disorder, rare 
events, metastable states, etc...

• NP-FRG in a superfield setting (with introduction of many 
copies and of a weighting factor to select the proper solution) 
solves the 30-year-old pending problems concerning the critical 
behavior in random field systems.

• It could be a useful formalism for other problems described by 
a stochastic field equation with multiple solutions (metastable 
states in glasses, shocks in fluid turbulence, Gribov copies in 
non-Abelian gauge theories,...).

Conclusion



Below dDR ≃ 5.1: cuspy fixed point for         
δk(ϕ1,ϕ2)
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Dimensionless second cumulant at the fixed point in d=3
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Breakdown of the (SUSY) WT identity at the fixed point in d=3

Below dDR: cusp in               & spontaneous SUSY breakingδk(ϕ1,ϕ2)

12
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δk(0, y)

y

|t|

FIG. 4: NP-FRG flow of δk(0, y) for d = 4 < dDR. The initial
conditions at k = Λ (i.e., t = 0) for u′

k(ρ) and zk(ρ) are taken
at the fixed-point solution, u′

∗(ρ) and z∗(ρ), and that for δk

is chosen as δk=Λ(ρ, y) = 1. One observes that a linear cusp
appears at a finite RG time. By construction δk(0, 0) = 1
along the flow.
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 1
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 3

 0  0.02  0.04  0.06  0.08

ρ

z!(ρ), δ!(ρ, 0)

FIG. 5: Fixed-point solution in d = 3 for z∗(ρ) (solid line)
and δ∗(ρ, 0) (dashed line). The two functions differ for a large
enough field (by construction, they coincide at ρ = 0).

Fig. 9. Above dDR ! 5.1, we find that η and η̄ rigor-
ously coincide, η̄ = η, which is the signature of dimen-
sional reduction. (Their value is moreover equal to that
found in the same order of the derivative expansion for
the pure Ising model in dimension d − 2.) Below dDR,
the two anomalous dimensions bifurcate and η̄ #= η. Note
that the predicted values satisfy the required bounds, i.e.,
2η ≥ η̄ ≥ η, η ≥ (4 − d)/2, η̄ ≥ 4 − d.

We give in Table I our estimates for η and η̄ in d = 3
and d = 4, where a comparison is possible with numerical
determinations from computer studies (Monte Carlo cal-
culations and T = 0 ground-state determinations). One
can see that the agreement is good or very good. (Note
also that the real-space RG studies in d = 352–56 provide
results in the same range, with an anomalous dimension
η between 0.51 to 0.56 and an exponent θ between 1.50
and 1.56.) As is well known from the study of simpler
models such as the pure O(N) model, the way to fur-
ther improve the accuracy of the exponents would be to
consider higher orders of the approximation scheme pre-
sented in section IV-A.

!2
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 8

 10

 0

ρ

u
′
!(ρ)

FIG. 6: Fixed-point solution u′
∗(ρ) for dimensions ranging

from 3 (steepest) to 4.8 (smoother curve). The variable ρ
has been rescaled by a factor e−d so that all curves can be
represented on the same plot.
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FIG. 7: Fixed-point solution z∗(ρ) for dimensions ranging
from 3 (steepest) to 4.8 (smoother curve). The variable ρ
has been rescaled by a factor e−d so that all curves can be
represented on the same plot.

We have not been able to perform our NP-FRG cal-
culation down to the lower critical dimension d = 2,
where the values η = 1 and η̄ = 2 are exactly known.
The numerical resolution of the flow equations become
extremely arduous in low dimension where the anoma-
lous dimensions become large and approach their lower
bound, (4− d)/2 and 4− d respectively. In addition, one
also encounters numerical difficulties as one approaches
the critical dimension dDR from below. Indeed, as men-
tioned in section IV-D, one anticipates that the limit
d → d−DR, y → 0 is nonuniform with a boundary layer in
y2/(dDR − d). More??????

Fig. 9 also provides evidence that the claim accord-
ing to which the two exponents η and η̄ are related by a
fixed ratio, η̄ = 2η,22–24,57 cannot be right in general. It
is true that the relation η̄ = 2η is exact in d = 2 (and
according to a phenomenological RG,58 also at first order
in d = 2 + ε) and is very closely obeyed by the numerical
estimates in d = 3 and d = 4 (see Table I). However, the
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Anomalous dimensions in d=4+ε (1-loop exact FRG)

Above NDR =18: no cusp and dimensional reduction
Below NDR=18: cusp and breakdown of dimensional reduction

At the critical value Nc, the beta function for R!!z" !un-
scaled by !" in exactly d=4 has a !cuspy" fixed-point solu-
tion R*!!z" for any arbitrary value of the renormalized disor-
der strength R*!!1". We have noted in Ref. 21 that the
situation bears some similarity with the pure O!N" model
near d=2. There, the critical value Nc below which a QLRO
phase may occur for !"0 is Nc=2, and for Nc=2 and d=2
the beta function for the temperature identically vanishes,
independently of the value of the temperature. The singular
point !Nc=2, d=2" is characterized by the existence of a
Kosterlitz-Thouless transition. One may then wonder
whether the singular point of the RFO!N"M !Nc=2.8347. . .,
d=4", despite the absence of the Abelian property specific to
the O!N=2" model, also possesses a Kosterlitz-Thouless
transition. This point will be addressed below with the help
of the two-loop calculation.

We now complement this numerical study by providing
some analytical results. We first show that for d#4, the criti-
cal point is always characterized by a correlation-length ex-
ponent $ which is equal !at one loop" to its dimensional-
reduction value, $DR=1/!. The eigenvalue equation obtained
by linearizing the beta function, Eq. !32", for a small devia-
tion from the fixed-point solution, %!z"= R̃!!z"− R̃*!!z", is

&

!
%!z" = %!z"„R̃*!!z"z3 + 2R̃*!!z"z − R̃*!!z"z + NR̃*!!1" − 3R̃*!!1"

+ !4z2 + N − 3"R̃*"!z" − 1… + %!1"„!N − 3"R̃*!!z"

− !N + 1"zR̃*"!z" − !z2 − 1"R̃*!!z"… + %!!z"„R̃*!!z"z4

− 2R̃*!!z"z2− NR̃*!!1"z − R̃*!!1"z + 6!z2 − 1"R̃*"!z"z

+!4z2 + N − 3"R̃*!!z" + R̃*!!z"… − !1 − z2"

'„zR̃*!!z" − R̃*!!1" − !1 − z2"R̃*"!z"…%"!z" . !35"

By substituting %!z"= R̃*!!z" in the above equation, one can
easily check that the fixed-point solution is also a solution of
the eigenvalue equation with a positive eigenvalue &1=!
!from which $=$DR=1/!". This result is independent of the
analytic or nonanalytic character of R̃*!!z". For d"4, R̃*!!z" is
also the solution of Eq. !35" with &1=!, but the eigenvalue is
now negative, which allows the fixed point to be fully attrac-
tive.

For N#18 it is possible to adapt Fisher’s arguments con-
cerning the hierarchy of flow equations for the successive
derivatives of R̃*!z" evaluated at z=1.19 !In his paper how-
ever, Fisher did not envisage nonanalytic fixed-point solu-
tions." As explained above, a fixed point with a well-defined
second derivative and an associated negative eigenvalue
!&2"0" can be found for N#18. !Note that cuspy fixed
points are also present, but they are more than once unstable
and correspond to putative multicritical behavior; a detailed
analysis of the fixed points and their stability in the N→(
limit has been recently provided by Sakamoto et al.27" The
flow equations for the higher derivatives are linear, namely,

− )")R̃!p"!1" = − &p„R̃!1",R̃!1"…R̃!p"!1"

+ Fp„R̃!1",R̃!1", . . . ,R̃!p−1"!1"… , !36"

provided of course that the pth derivative is well-defined in
z=1. If R̃!!1" and R̃"!1" are chosen equal to their fixed-point

values, R̃*!!1"=1/ !N−2" and R̃*"!1"=
!N−8"−#!N−2"!N−18"

2!N−2"!N+7" , one
finds

FIG. 2. Ratios *DR /* !upper curve" and
*̄DR / *̄ !lower curve" vs N for the RFO!N#2"M
at first order in !=d−4 $the dimensional-
reduction value for the exponents is *DR= *̄DR
=! / !N−2"%. The critical value of N at which both
* and *̄ diverge is Nc=2.8347. . ..

FIG. 3. Exponents * and *̄ !divided by !" characterizing the
power-law decay of the pair correlations in the QLRO phase of the
RFO!N"M for N"Nc=2.8437. . . !first order in !=d−4".
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Optimization of the cut-off (to ensure a better stability of the results)
                       

16
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FIG. 10: Dependence of the anomalous dimensions η (upper
panel) and η̄ (lower panel) on the parameter a of the IR cutoff
function in Eq. (50). The “principle of minimal sensitivity”
leads to a determination of the anomalous exponents η =
0.565 and η̄ = 1.075 (at the minima). The variation of the
exponent is very small over a wide range of a and enables us
to evaluate the precision to ∆η = 0.03 and ∆η̄ = 0.04

2. Regularization of the numerical instabilities

Illustrate in Fig. ????? the appearance of numerical
instabilities in the physically unimportant region of large
fields.

TO BE WRITTEN
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1007 (1996).
7 P. Chauve, T. Giamarchi, and P. Ledoussal, Phys. Rev. B

62, 6241 (2000).
8 P. Le Doussal, K. J. Wiese, and P. Chauve, Phys. Rev. B

66, 174201 (2002); Phys. Rev. E 69, 026112 (2004).
9 L. Balents and P. Ledoussal, Europhysics Lett. 65, 685

(2004); Ann. Phys. 315, 213 (2005).
10 P. Le Doussal and K. J. Wiese, Phys. Rev. E 79, 051106

(2009).
11 P. Ledoussal, Ann. Phys. 325, 49 (2010).
12 J. Villain, Phys. Rev. Lett. 52, 1543 (1984).
13 D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986).
14 T. Nattermann, Spin glasses and random fields (World sci-

entific, Singapore, 1998), pp. 277, and references therein.
15 G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).
16 J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).
17 J. Bricmont and A. Kupianen, Phys. Rev. Lett. 59, 1829

(1987).
18 G. Parisi, in Proceedings of Les Houches 1982, Session

XXXIX, edited by J. B. Zuber and R. Stora (North Hol-
land, Amsterdam, 1984), p. 473.

19 M. Tissier and G. Tarjus, preceding paper (2011).


