Asymptotically Safe Gravity From Euclidean to Lorentzian Signature

Frank Saueressig

Group for Theoretical High Energy Physics (THEP) Institute of Physics

E. Manrique, S. Rechenberger and F.S., PRL 106 (2011) 251302

Renormalization Group Approach – from Ultra Cold Atoms to the Hot QGP Kyoto, September 2nd, 2011

Outline

- Motivation for Quantum Gravity
- Foundations of Asymptotic Safety
- Functional Renormalization Group Equations: Part I
 - covariant construction
 - Einstein-Hilbert results
 - Higher-derivative summary
- Functional Renormalization Group Equations: Part II
 - causal construction
 - Einstein-Hilbert results
- Conclusion and perspectives

standard model of particle physics:

- describes: electromagnetic/strong/weak force + interactions with matter
- extremely well tested

standard model of particle physics:

- describes: electromagnetic/strong/weak force + interactions with matter
- extremely well tested

theoretical basis: quantum field theory in flat, non-dynamical space-time

includes only relevant and marginal couplings

 \implies renormalizable quantum field theory

General Relativity:

- describes: gravity + interactions with matter
- extremely well tested

General Relativity:

- describes: gravity + interactions with matter
- extremely well tested

theoretical basis: classical theory in curved, dynamical space-time

$$\underbrace{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}_{\text{space-time curvature}} = \underbrace{-\Lambda g_{\mu\nu} + 8\pi G_N T_{\mu\nu}}_{\text{matter content}}$$

• Newton constant G_N has negative mass-dimension

Gravity: Perturbative quantization

Length scale for Quantum Gravity Effects:

Planck scale:
$$\ell_{\rm Pl} = \left(\frac{\hbar G_N}{c^3}\right)^{1/2} \approx 10^{-33} {\rm cm} \, ; \, m_{\rm Pl} = 10^{19} {\rm GeV}$$

• Theoretically: expect strong quantum corrections to G_N, Λ

Gravity: Perturbative quantization

Length scale for Quantum Gravity Effects:

Planck scale:
$$\ell_{\rm Pl} = \left(\frac{\hbar G_N}{c^3}\right)^{1/2} \approx 10^{-33} {\rm cm} \, ; \, m_{\rm Pl} = 10^{19} {\rm GeV}$$

• Theoretically: expect strong quantum corrections to G_N , Λ

perturbative quantization of General Relativity

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left\{ -R + 2\Lambda \right\}$$

• G_N has negative mass-dimension \Leftrightarrow infinite number of counterterms

gravity + scalar:
$$\Delta S^{1-\text{loop}} \propto \int d^4x \sqrt{g} \left\{ C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu} \right\}$$

pure gravity:
$$\Delta S^{2-\text{loop}} \propto \int d^4x \sqrt{g} \left\{ C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\alpha\beta} C_{\alpha\beta}{}^{\mu\nu} \right\}$$

Gravity: Perturbative quantization

Length scale for Quantum Gravity Effects:

Planck scale:
$$\ell_{\rm Pl} = \left(\frac{\hbar G_N}{c^3}\right)^{1/2} \approx 10^{-33} {\rm cm} \, ; \, m_{\rm Pl} = 10^{19} {\rm GeV}$$

• Theoretically: expect strong quantum corrections to G_N , Λ

perturbative quantization of General Relativity

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left\{ -R + 2\Lambda \right\}$$

• G_N has negative mass-dimension \Leftrightarrow infinite number of counterterms

gravity + scalar:
$$\Delta S^{1-\text{loop}} \propto \int d^4x \sqrt{g} \left\{ C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu} \right\}$$

pure gravity: $\Delta S^{2-\text{loop}} \propto \int d^4x \sqrt{g} \left\{ C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\alpha\beta} C_{\alpha\beta}{}^{\mu\nu} \right\}$

General Relativity is perturbatively non-renormalizable

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 \approx M_{\rm Pl}^2$

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, ...
 - possibly: extension of QFT-framework

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, ...
 - possibly: extension of QFT-framework
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion requires going beyond perturbation theory

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, ...
 - possibly: extension of QFT-framework
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion requires going beyond perturbation theory

Renormalizing the Non-Renormalizable

Wilson's modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

Wilson's modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

implementation:

- action with scale-dependent couplings (G_N, Λ, \ldots) : $g_i(k)$
- scale-dependence governed by β -functions:

 $k\partial_k g_i = \beta_{g_i}(\{g_i\})$

Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

• RG-flow for dimensionless running couplings: $g_i(k)$

Fixed points g_i^* :

- β -functions vanish:
- RG-trajectory captured by fixed point in UV:

 \implies physical quantities remain free of unphysical divergences

 $\beta_{g_i}(\{g_i^*\}) \stackrel{!}{=} 0$

 g_i^* remain finite

Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

RG-flow for dimensionless running couplings:

Fixed points g_i^* :

• β -functions vanish:

 $g_i(k)$

 $\beta_{g_i}(\{g_i^*\}) \stackrel{!}{=} 0$

 g_i^* remain finite

RG-trajectory captured by fixed point in UV:

 \implies physical quantities remain free of unphysical divergences

Concepts associated with UV-fixed points:

- trajectories emanating from fixed point in UV \equiv span UV critical surface
- predictivity:
 - \equiv UV critical surface has finite dimension

Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom

(example: QCD)

Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom

(example: QCD)

- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom

(example: QCD)

- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Wilsonian picture: generalization of perturbative renormalization

asymptotic safety as predictive as asymptotic freedom

Renormalizing gravity

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom
- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Weinberg's asymptotic safety conjecture (1979):

gravity in d = 4 has non-Gaussian UV fixed point

Gravity

Functional Renormalization Group Equations I covariant construction

Theory:degrees of freedom:metric field $g_{\mu\nu}$ symmetries:coordinate transformations (diffeomorphisms)

Functional Renormalization group equation:

• Wetterich equation for effective average action Γ_k

[C. Wetterich, Phys. Lett. **B301** (1993) 90]

adapted to gravity

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

Theory:degrees of freedom:metric field $g_{\mu\nu}$ symmetries:coordinate transformations (diffeomorphisms)

Construction of the flow equation:

• starting point: generic diffeomorphism invariant action $S^{\text{grav}}[g_{\mu\nu}]$

Theory: degrees of freedom: metric field $g_{\mu\nu}$ symmetries: coordinate transformations (diffeomorphisms)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{\text{grav}}[g_{\mu\nu}]$
- background covariance background field formalism
 - quantum field is split into (fixed) background value + arbitrary fluctuation

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

• implement gauge-fixing term:

$$S^{\rm gf} = \frac{1}{2\alpha} \int d^4x \sqrt{\bar{g}} F_{\mu} \bar{g}^{\mu\nu} F_{\nu} \,, \quad F_{\mu} = \bar{D}^{\mu} h_{\mu\nu} - \beta \bar{D}_{\mu} h$$

and corresponding ghost action

$$S^{\text{gh}}[h, C, \bar{C}; \bar{g}] = -\sqrt{2} \int d^4x \sqrt{\bar{g}} \,\bar{C}_\mu \,\mathcal{M}^\mu{}_\nu \,C^\nu$$
$$\mathcal{M}^\mu{}_\nu = \bar{g}^{\mu\rho} \bar{g}^{\sigma\lambda} \bar{D}_\lambda (g_{\rho\nu} D_\sigma + g_{\sigma\nu} D_\rho) - \bar{g}^{\rho\sigma} \bar{g}^{\mu\lambda} \bar{D}_\lambda (g_{\sigma\nu} D_\rho)$$

Theory:degrees of freedom:metric field $g_{\mu\nu}$ symmetries:coordinate transformations (diffeomorphisms)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{\text{grav}}[g_{\mu\nu}]$
- background covariance background field formalism

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

• add: *k*-dependent IR cutoff:

$$\Delta_k S[h;\bar{g}] = \int d^4x \sqrt{\bar{g}} \left\{ h_{\mu\nu} \mathcal{R}_k[\bar{g}]^{\mu\nu\rho\sigma} h_{\rho\sigma} + \ldots \right\}$$

 $^{\circ} \quad \mathcal{R}_k[ar{g}] \propto \mathcal{Z}_k k^2 R^{(0)}$ = k-dependent mass term

 \circ discriminates low/high- \bar{D}^2 -eigenmodes

$$R^{(0)}(p^2/k^2) = \begin{cases} 0 & p^2 \gg k^2 \\ 1 & p^2 \ll k^2 \end{cases}$$

- high momentum modes: integrated out
- Iow momentum modes: suppressed by mass term

Theory:degrees of freedom:metric field $g_{\mu\nu}$ symmetries:coordinate transformations (diffeomorphisms)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{\text{grav}}[g_{\mu\nu}]$
- background covariance <>>> background field formalism

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

• add: *k*-dependent IR cutoff:

$$\Delta_k S[h;\bar{g}] = \int d^4x \sqrt{\bar{g}} \left\{ h_{\mu\nu} \mathcal{R}_k[\bar{g}]^{\mu\nu\rho\sigma} h_{\rho\sigma} + \ldots \right\}$$

• exact RG equation for Γ_k :

$$k\partial_k\Gamma_k[h;\bar{g}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

• $\Gamma_k^{(2)}$ = Hessian with respect to fluctuation fields

 \circ "extra" \bar{g} -dependence necessary for formulating exact equation

Theory space underlying the Functional Renormalization Group

Non-perturbative approximation: derivative expansion of Γ_k

• caveat: FRGE cannot be solved exactly

 \iff gravity: need non-perturbative approximation scheme

Non-perturbative approximation: derivative expansion of Γ_k

• caveat: FRGE cannot be solved exactly

 \iff gravity: need non-perturbative approximation scheme

• expand Γ_k in derivatives and truncate series:

$$\Gamma_k[\Phi] = \sum_{i=1}^N \,\bar{u}_i(k) \,\mathcal{O}_i[\Phi]$$

- \implies substitute into FRGE
- \implies projection of flow gives β -functions for running couplings

$$k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i;k)$$

Non-perturbative approximation: derivative expansion of Γ_k

• caveat: FRGE cannot be solved exactly

 \iff gravity: need non-perturbative approximation scheme

• expand Γ_k in derivatives and truncate series:

$$\Gamma_k[\Phi] = \sum_{i=1}^N \,\bar{u}_i(k) \,\mathcal{O}_i[\Phi]$$

 \implies substitute into FRGE

 \implies projection of flow gives β -functions for running couplings

$$k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i;k)$$

- testing the reliability:
 - within a given truncation:

cutoff-scheme dependence of physical quantities (= vary \mathcal{R}_k)

stability of results within extended truncations

Letting things flow The Einstein-Hilbert truncation

The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k)\right] + S^{\rm gf} + S^{\rm gh}$$

• project flow onto G- Λ -plane

The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k)\right] + S^{\rm gf} + S^{\rm gh}$$

• project flow onto G- Λ -plane

explicit β -functions for dimensionless couplings $g_k := k^2 G(k)$, $\lambda_k := \Lambda(k)k^{-2}$

• Particular choice of \mathcal{R}_k (optimized cutoff)

$$\begin{aligned} k\partial_k g_k &= (\eta_N + 2)g_k \,, \\ k\partial_k \lambda_k &= -\left(2 - \eta_N\right)\lambda_k - \frac{g_k}{2\pi} \left[5\frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1 - 2\lambda_k}\eta_N\right] \end{aligned}$$

anomalous dimension of Newton's constant:

$$\eta_N = \frac{gB_1}{1 - gB_2}$$

$$B_1 = \frac{1}{3\pi} \left[5 \frac{1}{1-2\lambda} - 9 \frac{1}{(1-2\lambda)^2} - 7 \right], \ B_2 = -\frac{1}{12\pi} \left[5 \frac{1}{1-2\lambda} + 6 \frac{1}{(1-2\lambda)^2} \right]$$

Einstein-Hilbert truncation: Fixed Point structure

 β -functions for $g_k := k^2 G(k) \,, \; \lambda_k := \Lambda(k) k^{-2}$

 $k\partial_k g_k = (\eta_N + 2)g_k ,$ $k\partial_k \lambda_k = -(2 - \eta_N) \lambda_k - \frac{g_k}{2\pi} \left[5\frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1 - 2\lambda_k}\eta_N \right]$

microscopic theory \iff fixed points of the β -functions

 $\beta_g(g^*, \lambda^*) = 0$, $\beta_\lambda(g^*, \lambda^*) = 0$
Einstein-Hilbert truncation: Fixed Point structure

 β -functions for $g_k := k^2 G(k) \,, \; \lambda_k := \Lambda(k) k^{-2}$

 $k\partial_k g_k = (\eta_N + 2)g_k ,$ $k\partial_k \lambda_k = -(2 - \eta_N) \lambda_k - \frac{g_k}{2\pi} \left[5\frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1 - 2\lambda_k}\eta_N \right]$

microscopic theory \iff fixed points of the β -functions

 $\beta_g(g^*, \lambda^*) = 0$, $\beta_\lambda(g^*, \lambda^*) = 0$

- Gaussian Fixed Point:
 - at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - UV-repulsive for g > 0

Einstein-Hilbert truncation: Fixed Point structure

 β -functions for $g_k := k^2 G(k) \,, \; \lambda_k := \Lambda(k) k^{-2}$

 $k\partial_k g_k = (\eta_N + 2)g_k ,$ $k\partial_k \lambda_k = -(2 - \eta_N)\lambda_k - \frac{g_k}{2\pi} \left[5\frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1 - 2\lambda_k}\eta_N \right]$

microscopic theory \iff fixed points of the β -functions

$$eta_g(g^*,\lambda^*)=0 \ , \qquad eta_\lambda(g^*,\lambda^*)=0$$

- Gaussian Fixed Point:
 - at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - UV-repulsive for g > 0
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - \circ at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

Einstein-Hilbert truncation: Fixed Point structure

 β -functions for $g_k := k^2 G(k) \,, \; \lambda_k := \Lambda(k) k^{-2}$

 $k\partial_k g_k = (\eta_N + 2)g_k,$ $k\partial_k \lambda_k = -(2 - \eta_N)\lambda_k - \frac{g_k}{2\pi} \left[5\frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1 - 2\lambda_k}\eta_N\right]$

microscopic theory \iff fixed points of the β -functions

 $\beta_g(g^*,\lambda^*) = 0$, $\beta_\lambda(g^*,\lambda^*) = 0$

- Gaussian Fixed Point:
 - at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - UV-repulsive for g > 0
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - \circ at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity

Einstein-Hilbert truncation: Stability properties

Ref.	g^*	λ^*	$g^*\lambda^*$	$\theta^\prime \pm i \theta^{\prime\prime}$	gauge	\mathcal{R}_k
BMS	0.902	0.109	0.099	$2.52 \pm 1.78i$	geometric	II, opt
RS	0.403	0.330	0.133	$1.94 \pm 3.15i$	harmonic	I, sharp
LR	0.272	0.348	0.095	$1.55 \pm 3.84i$	harmonic	I, exp
	0.344	0.339	0.117	$1.86 \pm 4.08i$	Landau	I, exp
L	1.17	0.25	0.295	$1.67 \pm 4.31i$	Landau	I, opt
CPR	0.707	0.193	0.137	$1.48 \pm 3.04i$	harmonic	I, opt
	0.556	0.092	0.051	$2.43 \pm 1.27i$	harmonic	II, opt
	0.332	0.274	0.091	$1.75 \pm 2.07i$	harmonic	III, opt

- BMS: Benedetti, Machado, Saueressig, 2009.
- RS: Reuter, Saueressig, 2002.
- LR: Lauscher, Reuter, 2002.
- L: Litim, 2004.
- CPR: Codello, Percacci, Rahmede, 2009.

Einstein-Hilbert truncation: NGFP in $d = 2 + \epsilon$

 β -functions continuous in $d \iff$ reproduce perturbative fix point in $d = 2 + \epsilon$

NGFP in $d = 4 \iff$ analytic continuation of NGFP in $d = 2 + \epsilon$

Einstein-Hilbert-truncation: the phase diagram

Letting things flow Higher-derivative terms

Charting the theory space of gravity

Charting the theory space of gravity

Exploring the gravitational theory space

Some key results ...

- evidence for asymptotic safety
 - \Rightarrow non-Gaussian fixed point provides UV completion of gravity
- finite dimensional UV-critical surface
 - \Rightarrow possibly: 3 relevant parameters
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

Exploring the gravitational theory space

Some key results ...

- evidence for asymptotic safety
 - \Rightarrow non-Gaussian fixed point provides UV completion of gravity
- finite dimensional UV-critical surface
 - \Rightarrow possibly: 3 relevant parameters
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

... and open questions:

- Existence of NGFP in extended truncations?
- Dimension of its UV-critical surface?

Exploring the gravitational theory space

Some key results ...

- evidence for asymptotic safety
 - \Rightarrow non-Gaussian fixed point provides UV completion of gravity
- finite dimensional UV-critical surface
 - \Rightarrow possibly: 3 relevant parameters
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

... and open questions:

- Existence of NGFP in extended truncations?
- Dimension of its UV-critical surface?

How does the signature of space-time

affect asymptotic safety?

Functional Renormalization Group Equations II foliated space-times

Foliation structure via ADM-decomposition

Preferred "time"-direction via foliation of space-time

• foliation structure $\mathcal{M}^{d+1} = S^1 \times \mathcal{M}^d$ with $y^{\mu} \mapsto (\tau, x^a)$:

$$ds^{2} = N^{2}dt^{2} + \sigma_{ij} \left(dx^{i} + N^{i}dt \right) \left(dx^{j} + N^{j}dt \right)$$

• fundamental fields: $g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$

$$g_{\mu\nu} = \begin{pmatrix} N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

Foliation structure via ADM-decomposition

Preferred "time"-direction via foliation of space-time

• foliation structure $\mathcal{M}^{d+1} = S^1 \times \mathcal{M}^d$ with $y^{\mu} \mapsto (\tau, x^a)$:

$$ds^{2} = \epsilon N^{2} dt^{2} + \sigma_{ij} \left(dx^{i} + N^{i} dt \right) \left(dx^{j} + N^{j} dt \right)$$

• fundamental fields: $g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$

$$g_{\mu\nu} = \begin{pmatrix} \epsilon N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

Allows to include signature parameter $\epsilon = \pm 1$

Theory:degrees of freedom:component fields N, N_i, σ_{ij} symmetries:diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{\text{grav}}[N, N_i, \sigma_{ij}]$
 - diffeomorphism invariant or Horava-type

Theory:degrees of freedom:component fields N, N_i, σ_{ij} symmetries:diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{grav}[N, N_i, \sigma_{ij}]$
 - diffeomorphism invariant or Horava-type

gauge-fixing: Background field formalism for (N, N_i, σ_{ij}) :

$$N = \overline{N} + h$$
, $N_i = \overline{N}_i + h_i$, $\sigma_{ij} = \overline{\sigma}_{ij} + h_{ij}$

• choice of backgrounds: $\bar{N} = 1, \bar{N}_i = 0$

 \implies admit temporal gauge: $h = 0, h_i = 0$

$$S^{\rm gf} = \frac{1}{2\alpha} \sqrt{\epsilon} \int d\tau \int d^3x \sqrt{\bar{\sigma}} \left\{ h^2 + \bar{\sigma}^{ij} h_i h_j \right\}$$

Theory:degrees of freedom:component fields N, N_i, σ_{ij} symmetries:diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

- starting point: generic diffeomorphism invariant action $S^{grav}[N, N_i, \sigma_{ij}]$
 - diffeomorphism invariant or Horava-type

gauge-fixing: Background field formalism for (N, N_i, σ_{ij}) :

$$N = \overline{N} + h$$
, $N_i = \overline{N}_i + h_i$, $\sigma_{ij} = \overline{\sigma}_{ij} + h_{ij}$

• choice of backgrounds: $\bar{N} = 1, \bar{N}_i = 0$

 \implies admit temporal gauge: $h = 0, h_i = 0$

$$S^{\rm gf} = \frac{1}{2\alpha} \sqrt{\epsilon} \int d\tau \int d^3x \sqrt{\bar{\sigma}} \left\{ h^2 + \bar{\sigma}^{ij} h_i h_j \right\}$$

ghost action:

$$S^{\rm gh} = \sqrt{\epsilon} \int d\tau \int d^3x \sqrt{\bar{\sigma}} \left\{ \bar{C} \partial_{\tau} C + \bar{C}_i \partial_{\tau} C^i \right\}$$

Theory:degrees of freedom:component fields N, N_i, σ_{ij} symmetries:diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

• starting point: generic diffeomorphism invariant action $S^{\text{grav}}[N, N_i, \sigma_{ij}]$

gauge-fixing: Background field formalism for (N, N_i, σ_{ij}) :

$$N = \overline{N} + h$$
, $N_i = \overline{N}_i + h_i$, $\sigma_{ij} = \overline{\sigma}_{ij} + h_{ij}$

k-dependent IR-cutoff $\Delta_k S$

$$\Delta_k S[h;\bar{\sigma}] = \sqrt{\epsilon} \int d\tau \int d^3x \sqrt{\bar{\sigma}} \left\{ h_{ij} \mathcal{R}_k[\bar{\sigma}] h^{ij} + \ldots \right\}$$

- \mathcal{R}_k : depends on spatial Laplacian Δ only!
 - $\circ \quad \Delta = -\bar{\sigma}^{ij}\bar{D}_i\bar{D}_j$ is positive definite
 - Time-like fluctuations: regulated by circle
 - cutoff respects foliation-preserving diffeomorphisms only
 - \Rightarrow explore RG-flows in Horava gravity

Flow equation: formally the same as in covariant construction

$$k\partial_k\Gamma_k[h,h_i,h_{ij};\bar{\sigma}_{ij}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

• covariant:
$$\mathcal{M}^4$$

STr $\approx \sum_{\text{fields}} \int d^4 y \sqrt{\bar{g}}$

• foliated:
$$S^1 \times \mathcal{M}^3$$

STr
$$\approx \sqrt{\epsilon} \sum_{\text{component fields KK-modes}} \int d^3x \sqrt{\bar{\sigma}}$$

• structure resembles: quantum field theory at finite temperature!

Flow equation: formally the same as in covariant construction

$$k\partial_k\Gamma_k[h,h_i,h_{ij};\bar{\sigma}_{ij}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

• covariant:
$$\mathcal{M}^4$$

STr $\approx \sum_{\text{fields}} \int d^4 y \sqrt{\bar{g}}$

• foliated:
$$S^1 \times \mathcal{M}^3$$

STr
$$\approx \sqrt{\epsilon} \sum_{\text{component fields KK-modes}} \int d^3x \sqrt{\bar{\sigma}}$$

structure resembles: quantum field theory at finite temperature!

Advantages of the foliated flow equation:

- limits: same as covariant equation
- ϵ -dependence: keep track of signature effects
- structure: same as lattice approach of CDT

signature-dependent renormalization group flows Einstein-Hilbert truncation

ADM-decomposed Einstein-Hilbert truncation: setup

ADM-decomposed Einstein-Hilbert truncation: running couplings: G_k , Λ_k

$$\Gamma_k^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_k} \int d\tau d^3 x N \sqrt{\sigma} \left\{ \epsilon^{-1} K_{ij} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - R^{(3)} + 2\Lambda_k \right\} + S^{\text{gf}} + S^{\text{gh}}$$

• K_{ij} : extrinsic curvature

 $R^{(d)}$: intrinsic curvature

• $\epsilon = \pm 1$: signature parameter

ADM-decomposed Einstein-Hilbert truncation: setup

ADM-decomposed Einstein-Hilbert truncation: running couplings: G_k , Λ_k

$$\Gamma_k^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_k} \int d\tau d^3 x N \sqrt{\sigma} \left\{ \epsilon^{-1} K_{ij} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - R^{(3)} + 2\Lambda_k \right\} + S^{\text{gf}} + S^{\text{gh}}$$

• K_{ij} : extrinsic curvature

 $R^{(d)}$: intrinsic curvature

• $\epsilon = \pm 1$: signature parameter

Structure of the flow equation

$$k\partial_k\Gamma_k = T^{\mathrm{TT}} + T^0$$

$$T^{\rm TT} = \frac{\sqrt{\epsilon}k^3 d_{\rm 2T}}{(4\pi)^{3/2}} \sum_{n} \int d^3x \sqrt{\bar{\sigma}} \left[q_{3/2}^{1,0}(w_{\rm 2T}) + \frac{\bar{R}}{k^2} \left(\frac{1}{6} q_{1/2}^{1,0}(w_{\rm 2T}) - \frac{2}{3} q_{3/2}^{2,0}(w_{\rm 2T}) \right) \right]$$

ADM-decomposed Einstein-Hilbert truncation: setup

ADM-decomposed Einstein-Hilbert truncation: running couplings: G_k , Λ_k

$$\Gamma_k^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_k} \int d\tau d^3 x N \sqrt{\sigma} \left\{ \epsilon^{-1} K_{ij} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - R^{(3)} + 2\Lambda_k \right\} + S^{\text{gf}} + S^{\text{gh}}$$

• K_{ij} : extrinsic curvature

 $R^{(d)}$: intrinsic curvature

• $\epsilon = \pm 1$: signature parameter

Structure of the flow equation

$$k\partial_k\Gamma_k = T^{\mathrm{TT}} + T^0$$

$$T^{\rm TT} = \frac{\sqrt{\epsilon}k^3 d_{\rm 2T}}{(4\pi)^{3/2}} \sum_{n} \int d^3x \sqrt{\bar{\sigma}} \left[q_{3/2}^{1,0}(w_{\rm 2T}) + \frac{\bar{R}}{k^2} \left(\frac{1}{6} q_{1/2}^{1,0}(w_{\rm 2T}) - \frac{2}{3} q_{3/2}^{2,0}(w_{\rm 2T}) \right) \right]$$

 β -functions:

$$k\partial_k g_k = \beta_g(g,\lambda;m), \qquad k\partial_k \lambda_k = \beta_\lambda(g,\lambda;m)$$

• depend parametrically on dimensionless Kaluza-Klein-mass $m = \frac{2\pi}{Tk}$

Analyticity properties of β -functions

Kaluza-Klein sums: carry out analytically:

$$\sum_{n} q_{d/2}^{1,0}(w_{2T}) \propto \sum_{n} \frac{1}{1 + \frac{1}{2\epsilon}m^2n^2 - 2\lambda_k}$$

Summation: depends on signature ϵ :

$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{x \tanh(\pi x)}, \quad x^2 > 0 \quad \text{(hyperbolic functions)}$$
$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{i x \tan(\pi x)}, \quad x^2 < 0 \quad \text{(trigonometric functions)}$$

Analyticity properties of β -functions

Kaluza-Klein sums: carry out analytically:

$$\sum_{n} q_{d/2}^{1,0}(w_{2T}) \propto \sum_{n} \frac{1}{1 + \frac{1}{2\epsilon}m^2n^2 - 2\lambda_k}$$

Summation: depends on signature ϵ :

$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{x \tanh(\pi x)}, \quad x^2 > 0 \quad \text{(hyperbolic functions)}$$
$$\sum_{n} \frac{1}{n^2 + x^2} = \frac{\pi}{i x \tan(\pi x)}, \quad x^2 < 0 \quad \text{(trigonometric functions)}$$

analytic structure of β -functions: determined by ϵ, λ :

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

NGFP (Part I): fixed Kaluza-Klein mass

Scenario I: $T = \text{const} \iff \lim_{k \to \infty} m_k = \frac{2\pi}{Tk} \to 0$

NGFP (Part I): fixed Kaluza-Klein mass

Scenario I: $T = \text{const} \iff \lim_{k \to \infty} m_k = \frac{2\pi}{Tk} \to 0$

trigonometric terms in β -functions diverge:

ε	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

NGFP (Part I): fixed Kaluza-Klein mass

Scenario I: $T = \text{const} \iff \lim_{k \to \infty} m_k = \frac{2\pi}{Tk} \to 0$

trigonometric terms in β -functions diverge:

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

No analogue of the Non-Gaussian fixed Point!

NGFP (Part II): running Kaluza-Klein mass

Scenario II: $T \propto k^{-1} \iff \lim_{k \to \infty} m_k = m^* \neq 0$ (sequel : $m = 2\pi$)

 β -functions well-defined in all regions:

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

NGFP (Part II): running Kaluza-Klein mass

Scenario II: $T \propto k^{-1} \iff \lim_{k \to \infty} m_k = m^* \neq 0$ (sequel : $m = 2\pi$)

 β -functions well-defined in all regions:

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

Obtain: NGFP for **both** signatures:

ϵ	g_*	λ_*	$g_*\lambda_*$	$ heta_{1,2}$
+1	0.19	0.31	0.059	$1.07 \pm 3.31i$
-1	0.21	0.30	0.063	$0.94 \pm 3.10i$

NGFP (Part II): running Kaluza-Klein mass

Scenario II: $T \propto k^{-1} \iff \lim_{k \to \infty} m_k = m^* \neq 0$ (sequel : $m = 2\pi$)

 β -functions well-defined in all regions:

ϵ	$\lambda < \lambda^{(1)} < 0$	$\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2$	$\lambda^{(2)} < \lambda$
+1	hyperbolic	mixture	trigonometric
-1	trigonometric	mixture	hyperbolic

Obtain: NGFP for **both** signatures:

ϵ	g_*	λ_*	$g_*\lambda_*$	$ heta_{1,2}$
+1	0.19	0.31	0.059	$1.07 \pm 3.31i$
-1	0.21	0.30	0.063	$0.94 \pm 3.10i$

stability coefficients: almost the same!

Comparison: phase diagrams

Conclusion and Perspectives

novel causal functional renormalization group equation

- symmetries: foliation-preserving diffeomorphism
- applications:
 - RG flows of Euclidean and Lorentzian signature metrics
 - analytic complement to causal dynamical triangulations
 - Horava-type gravitational theories

Conclusion and Perspectives

novel causal functional renormalization group equation

- symmetries: foliation-preserving diffeomorphism
- applications:
 - RG flows of Euclidean and Lorentzian signature metrics
 - analytic complement to causal dynamical triangulations
 - Horava-type gravitational theories

Asymptotic Safety

- ADM-decomposed Einstein-Hilbert action:
 - Euclidean and Lorentzian signature: similar non-Gaussian fixed points
 - phase portraits identical to covariant computation
Conclusion and Perspectives

novel causal functional renormalization group equation

- symmetries: foliation-preserving diffeomorphism
- applications:
 - RG flows of Euclidean and Lorentzian signature metrics
 - analytic complement to causal dynamical triangulations
 - Horava-type gravitational theories

Asymptotic Safety

- ADM-decomposed Einstein-Hilbert action:
 - Euclidean and Lorentzian signature: similar non-Gaussian fixed points
 - phase portraits identical to covariant computation

gravity in UV

signature does not affect asymptotic safety