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describes: electromagnetic/strong/weak force + interactions with matter

extremely well tested

theoretical basis: quantum field theory in flat, non-dynamical space-time

includes only relevant and marginal couplings

— renormalizable quantum field theory
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Introduction

General Relativity:

describes: gravity + interactions with matter

extremely well tested

theoretical basis: classical theory in curved, dynamical space-time

\ - 7
Vv

space-time curvature matter content

Newton constant G has negative mass-dimension
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the Non-Renormalizable
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Wilson’s modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

classical
P UV S action

lop
1no Bunje.bajul

quantum
T effective action

implementation:

® action with scale-dependent couplings (G, A, .. .): gi(k)

® scale-dependence governed by g-functions: kOrg: = Bg; ({g:})



Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only
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® B-functions vanish: Bo:({g7}) =0
g; remain finite
® RG-trajectory captured by fixed point in UV:

— physical quantities remain free of unphysical divergences



Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

® RG-flow for dimensionless running couplings: gi (k)
Fixed points g}
® B-functions vanish: B, ({g7}) s

g; remain finite

® RG-trajectory captured by fixed point in UV:

— physical quantities remain free of unphysical divergences

Concepts associated with UV-fixed points:

® trajectories emanating from fixed point in UV
= span UV critical surface

® predictivity:

UV critical

= UV critical surface has finite dimension surface
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Renormalization: asymptotic freedom and asymptotic safet y

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point (GFP):
© perturbatively renormalizable field theories
©  UV-limit: free theory

© asymptotic freedom (example: QCD)

® non-Gaussian Fixed Point (NGFP):
© non-perturbatively renormalizable field theories
©  UV-limit: interacting theory

© asymptotic safety

Wilsonian picture: generalization of perturbative renormalization

asymptotic safety as predictive as asymptotic freedom




Renormalizing gravity

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point (GFP):
© perturbatively renormalizable field theories
©  UV-limit: free theory

© asymptotic freedom

® non-Gaussian Fixed Point (NGFP):
© non-perturbatively renormalizable field theories
O UV-limit: interacting theory GraVIty

© asymptotic safety

Weinberg's asymptotic safety conjecture (1979):

gravity in d = 4 has non-Gaussian UV fixed point




Functional Renormalization Group Equations |

covariant construction



Covariant functional RG equation  for gravity

Theory: degrees of freedom: metric field g,,.

symmetries: coordinate transformations (diffeomorphisms)

Functional Renormalization group equation:

® Wetterich equation for effective average action I';.
[C. Wetterich, Phys. Lett. B301 (1993) 90]

® adapted to gravity

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]
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Covariant functional RG equation  for gravity

Theory: degrees of freedom: metric field g,,.

symmetries: coordinate transformations (diffeomorphisms)

Construction of the flow equation:

® starting point: generic diffeomorphism invariant action S€*2V[g,,. |

® Dbackground covariance <— background field formalism
© guantum field is split into (fixed) background value + arbitrary fluctuation
Juv = Guv + huv
© implement gauge-fixing term:

set = L | d*a\/gF,g"'F,, F,=D"hu, —BDyh
© and corresponding ghost action

Sehip C,Cig) = \/_/d4a:\/_C MH, CV

S, = f]'ungADA(gpuDa + govDp) — gpagw\DA(gm/Dp)



Covariant functional RG equation  for gravity

Theory: degrees of freedom: metric field g,,.

symmetries: coordinate transformations (diffeomorphisms)

Construction of the flow equation:
® starting point: generic diffeomorphism invariant action S€*2V[g,,. |

® background covariance <—- background field formalism
Juv = Guv + h,ul/

® add: k-dependent IR cutoff:

8uS(hig) = [ d*ovG (s Relgl"™* hoo + ..

O Rplg] x Zk?R(©) = k-dependent mass term

_ 5
© discriminates low/high- D?-eigenmodes uv p* =k
0 p° >k
RO@ k=4 © 2
1 p? <k k

® high momentum modes: integrated out
® low momentum modes: suppressed by mass term



Covariant functional RG equation  for gravity

Theory: degrees of freedom: metric field g,,.

symmetries: coordinate transformations (diffeomorphisms)

Construction of the flow equation:

® starting point: generic diffeomorphism invariant action S&*2V[g,,. |

® Dbackground covariance <= background field formalism
Juv = Guv + h,ul/

® add: k-dependent IR cutoff:
AuS[hig) = [ dov/G (hyu Relal™*hpo +..)
® exact RG equation for I'y,:
a1 (2) -
kORTk[h; g = 1STr [(Fk +Rk) k@kRk}

O Fgf) = Hessian with respect to fluctuation fields

O “extra” g-dependence necessary for formulating exact equation



Theory space underlying the Functional Renormalization Gr oup

I,=r

~ bare action : .
effective action



Non-perturbative approximation: derivative expansion of L'y
® caveat: FRGE cannot be solved exactly

<> gravity: need non-perturbative approximation scheme
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Non-perturbative approximation: derivative expansion of
® caveat: FRGE cannot be solved exactly

<> gravity: need non-perturbative approximation scheme

® expand I in derivatives and truncate series:

N

Tp[®] =) (k) O[@]

1=1
— Substitute into FRGE

—> projection of flow gives g-functions for running couplings

kOpui(k) = Bi(ui; k)

® testing the reliability:

© within a given truncation:
cutoff-scheme dependence of physical quantities (= vary R)

© stability of results within extended truncations

L'y



Letting things flow

The Einstein-Hilbert truncation



The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)

1

= 167G / d*z\/g[—R + 2A(k)] + S8t 4 &b
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® project flow onto G-A—plane



The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)

1

Tp= ———
* T 167G (k)

/ d4x\/§ [—R + 2A(k)] + S8t 4 geb
® project flow onto G-A—plane

explicit s-functions for dimensionless couplings gi := k*G(k), A\ := A(k)k—?

® Particular choice of R, (optimized cutoff)

kOkgr = (N + 2)gk ,

kOpAk = — (2 —1nN) Ap — 35 [51—%>\k _4_%1—§>\an}

® anomalous dimension of Newton’s constant:

9gB1

W= T 5

_ 1 1 1 _ 1 1 1
B1 = 37 [5 =% 0 @=2n)? 7} , Ba = — 17 [5 T—ox 10 (1—2>\)2]



Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2

kOrgr =(nn + 2)gk ,

kO, = — (2—nn) A — 52 [51_%% _4_%1—§>\an]

microscopic theory < fixed points of the g-functions
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Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2

kOkgr = (NN + 2)gk ,

kO, = — (2—nn) A — 52 [51_%A,€ _4_%1—§A,€77N]

microscopic theory < fixed points of the g-functions

59(9*7>\*):Oa Bk(g*aA*):O

® (Gaussian Fixed Point:
© atg* =0,\* =0 <= free theory

©  UV-repulsive for g > 0

® non-Gaussian Fixed Point (%, = —2):
o atg* > 0,\* >0 <= "“interacting” theory

© UV attractive in g, \i

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity




Einstein-Hilbert truncation: Stability properties

Ref. g* A* g*A* 0" + 16" gauge R
BMS 0.902 0.109 0.099 2.52 4+ 1.781¢ geometric I, opt
RS 0.403 0.330 0.133 1.94 4+ 3.151¢ harmonic | I, sharp
LR 0.272 0.348 0.095 1.55 4+ 3.844 harmonic l, exp
0.344 0.339 0.117 1.86 + 4.08: Landau l, exp
L 1.17 0.25 0.295 1.67 + 4.314 Landau |, opt
CPR 0.707 0.193 0.137 1.48 £ 3.042 harmonic |, opt
0.556 0.092 0.051 2.43 + 1.271 harmonic I, opt
0.332 0.274 0.091 1.75 4+ 2.074 harmonic 1, opt
BMS: Benedetti, Machado, Saueressig, 2009.
RS: Reuter, Saueressig, 2002.
LR: Lauscher, Reuter, 2002.
L: Litim, 2004.

CPR:

Codello, Percacci, Rahmede, 2009.




Einstein-Hilbert truncation: NGFPIn d=2+¢

B-functions continuous in d <= reproduce perturbative fix pointin d = 2 + ¢

)\*

0.5

NGFP in d = 4 <= analytic continuation of NGFP ind = 2 + ¢




Einstein-Hilbert-truncation: the phase diagram




Letting things flow

Higher-derivative terms



Charting the theory space of gravity

Einstein-Hilbert truncation

R3 CL P Cpo "AC MY ROR + 7 more



Charting the theory space of gravity

Cl“/pa Cp(f KA Cﬂ)\,u,y

C'uypacpwpcf )

Einstein-Hilbert truncation

polynomial f(R)-truncation

R? + C2-truncation

RUOR + 7 more

RN’V R,LLI/



Exploring the gravitational theory space

Some key results . ..

® evidence for asymptotic safety
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® perturbative counterterms:

© gravity + matter: asymptotic safety survives 1-loop counterterm
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Exploring the gravitational theory space

Some key results . ..

® evidence for asymptotic safety

= non-Gaussian fixed point provides UV completion of gravity

® finite dimensional UV-critical surface

= possibly: 3 relevant parameters

® perturbative counterterms:

© gravity + matter: asymptotic safety survives 1-loop counterterm

... and open questions:

® Existence of NGFP in extended truncations?

® Dimension of its UV-critical surface?

How does the signature of space-time

affect asymptotic safety?




Functional Renormalization Group Equations |l

foliated space-times



Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time

'+ dat

\ Yipdr
g vt — N'dt
d*

Ndt

® foliation structure M2+ = St x M2 with y#* s (1, 2%):

ds? = N2dt® + 04 (dz* + N'dt) (dz’ + N7 dt)
® fundamental fields: g, — (N, N;, 0i5)

N? + N;N* N,
Juv =
Ni Oij



Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time

2 4 dat
. Piyar
S Noi— Nidt

dsx Ndt

PR

® foliation structure M9+1 = St x M2 with y* +— (7, 2%):

ds® = eN?dt® + 045 (dz" + N'dt) (dz? + N7 dt)
¢ fundamental fields: g,.., — (N, N;, 045)

eN? —|—N1Nz Nj
Juv =
Ni Oij

Allows to include signature parameter e = +1




Foliated functional renormalization group equation

Theory: degrees of freedom: component fields N, N;, o

symmetries: diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

® starting point: generic diffeomorphism invariant action S&"V[N, N;, 0]

© diffeomorphism invariant or Horava-type
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Foliated functional renormalization group equation

Theory: degrees of freedom: component fields N, N;, o

symmetries: diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

® starting point: generic diffeomorphism invariant action S&"V[N, N;, 0]

© diffeomorphism invariant or Horava-type

gauge-fixing: Background field formalism for (N, NV;, 045 ):

NZN—Fh, NZ:NZ—FhZ, Uij:5ij+hij
® choice of backgrounds: N=1,N; =0
— admit temporal gauge: h=0,h; =0

get = %ﬁ/dr/dgx\/g{h? + 5" h;hj}

ghost action:

gebh = \/g/dT/d%ﬁ{éaTCJréiaTci}



Foliated functional renormalization group equation

Theory: degrees of freedom: component fields N, N;, o

symmetries: diffeomorphisms (full or foliation preserving)

Construction of the flow equation:

® starting point: generic diffeomorphism invariant action S&"V[N, N;, 0]

gauge-fixing: Background field formalism for (v, N;, 0 ):

NZN—Fh, NZ:NZ—FhZ, Uij:5ij+hij
k-dependent IR-cutoff A S

A S[h; 5] = \/E/dT/d3a?\/g {hijRi[a]h"? + ...}

® R.:depends on spatial Laplacian A only!
© A =—-5YD,;D; is positive definite
©  Time-like fluctuations: regulated by circle
© cutoff respects foliation-preserving diffeomorphisms only

= explore RG-flows in Horava gravity



Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction
—1
kOl k[, hi, hij; 5i5] = %STr [(Fg) + Rk> k@knk}

® covariant: M4

® foliated: S x M3

STr ~ /e > > /d%ﬁ

component fields KK—modes

© structure resembles: quantum field theory at finite temperature!



Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction
—1
kOl k[, hi, hij; 5i5] = %STr [(Fg) + Rk) k@knk}

® covariant: M4

® foliated: S x M3

STr ~ /e > > /d%ﬁ

component fields KK—modes

© structure resembles: quantum field theory at finite temperature!

Advantages of the foliated flow equation:
® [imits: same as covariant equation
® c-dependence: keep track of signature effects

® structure: same as lattice approach of CDT



signature-dependent renormalization group flows

Einstein-Hilbert truncation



ADM-decomposed Einstein-Hilbert truncation: setup

ADM-decomposed Einstein-Hilbert truncation: running couplings: G, A

F?DM 16\7{;% dega:N\/_{ zj ZkO'jl — O'ijO'kl} K — R(S) -+ 2Ak}+5gf+5gh

® K,;: extrinsic curvature R4 intrinsic curvature

® ¢ = +1: signature parameter
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ADM-decomposed Einstein-Hilbert truncation: setup

ADM-decomposed Einstein-Hilbert truncation: running couplings: G, A

F?DM 16\7{;% dega:N\/_{ zj ZkO'jl — O'ijO'kl} K — R(S) -+ 2Ak}+5gf+5gh

® K,;: extrinsic curvature R4 intrinsic curvature

® ¢ = +1: signature parameter

Structure of the flow equation

kORI =T 4+ 79

ek°d _
7TT _ \(/;W 3/22TZ/d3a;\/_ 93/2(w2T) + iz <1qi/02(w2T) — %qg’/%(sz))}

B-functions:
kak:gk — 69(ga>\; m)7 kak)‘k — B)\(g7>‘; m)

® depend parametrically on dimensionless Kaluza-Klein-mass m = %



Analyticity properties of  S-functions

Kaluza-Klein sums: carry out analytically:

1
1,0
w ox
;qd/Q( 21) ;1 + ianQ — 2%

Summation: depends on signature e:
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— : > 0 (hyperbolic functions
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Z = - , x° <0 (trigonometric functions)
n? +x2  ix tan(mwx)



Analyticity properties of  S-functions

Kaluza-Klein sums: carry out analytically:

1
1,0
w ox
;qd/Q( 21) ;1 + ianQ — 2%

Summation: depends on signature e:

1 s o : :
— , x>0 (hyperbolic functions
Z n? +x2 1z tanh(wx) (hyp )
1 s o : : :
E = - , x° <0 (trigonometric functions)
n? +x2  ix tan(mwx)

analytic structure of g-functions: determined by e, A:

e || A< 2@ <o | AW <X <A@ =1/2 A2 <\

+1 hyperbolic mixture trigonometric

—1 || trigonometric mixture hyperbolic
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Scenario I: T = const — limg o0 M = 22 — 0
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NGFP (Part |): fixed Kaluza-Klein mass

Scenario I: T = const — limg o0 M = 22 — 0
trigonometric terms in g-functions diverge:
e || A< 2@ <0 | XD <A< A@) =1/2 A2 < )\
+1 hyperbolic mixtare trigonometriec
—1 || trigonemetric mixture hyperbolic

No analogue of the Non-Gaussian fixed Point!




NGFP (Part I): running Kaluza-Klein mass
Scenario Il: Tx k™! <= limgyoomr=m*"#0 (sequel :m = 27)

B-functions well-defined in all regions:

e || A< 2@ <0 | A <A< A@ =1/2 A2 < )

+1 hyperbolic mixture trigonometric

—1 || trigonometric mixture hyperbolic




NGFP (Part I): running Kaluza-Klein mass

Scenario l:

Txk 1 «—

limg_yoo mp, = m* #0

B-functions well-defined in all regions:

(sequel :m = 27)

e || A< 2@ <0 | A <A< A@ =1/2 A2 < )
+1 hyperbolic mixture trigonometric
—1 || trigonometric mixture hyperbolic
Obtain: NGFP for both signatures:
(€ gx A g*)\* 91,2
+1 0.19 | 0.31 0.059 1.07 £ 3.312
—1 0.21 | 0.30 0.063 | 0.94 £ 3.102




NGFP (Part I): running Kaluza-Klein mass

Scenario l:

Txk 1 «—

limg_yoo mp, = m* #0

B-functions well-defined in all regions:

(sequel :m = 27)

e || A< 2@ <0 | A <A< A@ =1/2 A2 < )
+1 hyperbolic mixture trigonometric
—1 || trigonometric mixture hyperbolic
Obtain: NGFP for both signatures:
(€ gx A g*)\* 91,2
+1 0.19 | 0.31 0.059 1.07 £ 3.312
—1 0.21 | 0.30 0.063 | 0.94 £ 3.102

stability coefficients: almost the same!




Comparison: phase diagrams
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novel causal functional renormalization group equation
® symmetries: foliation-preserving diffeomorphism
® applications:
© RG flows of Euclidean and Lorentzian signature metrics
© analytic complement to causal dynamical triangulations

© Horava-type gravitational theories

Asymptotic Safety

® ADM-decomposed Einstein-Hilbert action:
© Euclidean and Lorentzian signature: similar non-Gaussian fixed points

©  phase portraits identical to covariant computation

gravity in UV

signhature does not affect asymptotic safety
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