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A short summary

• Our earlier studies on the long standing problem in ERG: gauge symmetry vs cutoff

– Using Batalin-Vilkovisky formalism,

we can write the quantum master equation (QME) Σ̄Λ = 0 for finite cutoff Λ.

Therefore, gauge symmetry is present even in the presence of a cutoff.

The 1PI expression of QME is the modified ST identity.

• For anomalous theory, Σ̄Λ, the QM operator does not vanish.

Σ̄Λ ≡ A ∼ ghost × anomaly.

– A, a functional of fields. We discuss its properties for any Λ.

– Some thoughts on the Wess-Zumino condition.

– Concrete evaluation of the functional for a simple example.
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Earlier works on anomalies in ERG

- Bonini, D’Attanasio and Marchesini, PLB329 (1994) 249

- Bonini and Vian, NPB511 (1998) 469

- Pernici, Raciti and Riva, NPB520 (1998) 469
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1.1 Path integral formulation

The cutoff function

K(p/   )

p20 1

1
Λ

Λ2

The UV action with the cutoff Λ0

SΛ0[φ] =
1
2
φ ·K−1

0 D · φ+ SI,Λ0[φ] .

Zφ[J ] =
∫

Dφ exp
(
−SΛ0[φ] −K−1

0 J · φ
)
.

K0(p) ≡ K(p/Λ0)
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φ ·D · φ =
∫

d4p

(2π)4
φA(−p)DAB(p)φB(p), J · φ =

∫
d4p

(2π)4
JA(−p)φA(p)

Introduce a cutoff Λ(< Λ0) with K(p/Λ), and decompose φA into IR fields ΦA and UV

fields χA:

K0D
−1 = KD−1 + (K −K0)D−1

Integration over the UV fields gives the interaction aciton SI,Λ[Φ]

exp (−SI,Λ[Φ]) ≡
∫

Dχ exp
[
−1

2
χ · (K0 −K)−1D · χ− SI,Λ0[Φ + χ]

]
.

The Wilson action with the cutoff Λ is SΛ[Φ] ≡ 1
2Φ ·K−1D · Φ + SI,Λ[Φ]

and the partiction function is

ZΦ[J ] ≡
∫

DΦexp
(
−SΛ[Φ] −K−1J · Φ

)
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The two partition functions are related as

Zφ[J ] = NJZΦ[J ],

The normalization factor NJ is given by

lnNJ = −(−)εA

2
JAK

−1
0 K−1(K0 −K)

(
D−1

)AB
JB .

where εA is the Grassmann parity of ΦA.
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1.2 Flow and composite operator

The gradual integration gives a RG flow, or the Polchinski equation

Λ
∂

∂Λ
SΛ = −

∫
p

(
K−1K̇

)
(p)

[
ΦA(p)

∂lSΛ

∂ΦA(p)

]
+

1
2

∫
p

(−)εA
(
K̇D−1(p)

)AB
[

∂lSΛ

∂ΦB(−p)
∂rSΛ

∂ΦA(p)
− ∂l∂rSΛ

∂ΦB(−p)∂ΦA(p)

]
with the initial condition

SΛ=Λ0 = SΛ0

The functional integration is equivallent to solving the Polchinski equation.
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The composite operator is a useful notion.

Equivallent definitions for the composite operator OΛ[Φ]

1. Via the linearized Polchinski equation, with an initial condition at Λ0

Λ
∂

∂Λ
OΛ[Φ] = −D OΛ[Φ]

D ≡
∫

p

[(
K−1K̇

)
ΦA ∂l

∂ΦA
+ (−)εA

(
K̇D−1

)AB
(∂lSΛ

∂ΦB

∂r

∂ΦA
− 1

2
∂l∂r

∂ΦB∂ΦA

)]

2. Given an operator OΛ0[φ] at the UV scale Λ0, the corresponding IR composite operator

OΛ[Φ] may be constructed as

OΛ[Φ] e−SI [Φ;Λ] ≡
∫

DχOΛ0[Φ + χ] e−
1
2χ·(K0−K)−1D·χ−SI [Φ+χ;Λ0]

3. The expectation values in the presence of arbitrary sources satisfy

〈OΛ[Φ]〉Φ,K−1J = N−1
J 〈OΛ0[φ]〉φ,K−1

0 J
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Two important composite operators for later discussion:

ϕA
Λ ≡ K0

K
ΦA − (K0 −K)(D−1)AB∂

lSΛ

∂ΦB
,

= ΦA − (K0 −K)(D−1)AB∂
lSI,Λ

∂ΦB

and

K
(∂rSΛ

∂ΦA
O′

Λ − ∂rO′
Λ

∂ΦA

)
for a composite operator O′

Λ.

These obeys the flow equation:

Λ
∂

∂Λ
OΛ = −DOΛ
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2. Realization of symmetry: consider some transformation

φA → φ′A = φA + δλφ
A , δλφ

A = δφAλ = K0RA[φ; Λ0] λ .

∫
Dφ

(
K−1

0 J · δφ+ ΣΛ0[φ]
)

exp
(
−SΛ0[φ] −K−1

0 J · φ
)

= 0

where the quantity ΣΛ0[φ] is given as

ΣΛ0[φ] ≡ ∂rSΛ0

∂φA
δφA − ∂r

∂φA
δφA .

The second term is the contribution from the functional measure Dφ

δλ lnDφ = (−)εA
∂r

∂φA
δλφ

A =
∂r

∂φA
δφAλ .
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• ΣΛ0[φ] = 0 implies that the UV theory is invariant under δφ

• Appropriate to call ΣΛ0[φ] as the WT operator

Let us see how the transformation and the WT operator changes as the scale changes.

To find δΦ and ΣΛ at the scale Λ, use the definition of composite operator

〈K−1δΦA〉Φ,K−1J = N−1
J 〈K−1

0 δφA〉φ,K−1
0 J

〈ΣΛ[Φ]〉Φ,K−1J = N−1
J 〈ΣΛ0[φ]〉φ,K−1

0 J

Starting from the transformation K−1
0 δφ = R[φ; Λ0]

N−1
J 〈K−1

0 δφA〉φ,K−1
0 J = N−1

J RA[K0∂
l
J ; Λ0]Zφ[J ] =

(
N−1

J RA[K0∂
l
J ; Λ0]NJ

)
ZΦ[J ]

Writing the transformation of IR fields as δΦA = KRA[Φ], we may equate the above

expression with the following

〈K−1δΦA〉Φ,K−1J = RA[K∂l
J ]ZΦ[J ]
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We find the relation that gives transformation of the IR fields

RA[K∂l
J ] = N−1

J RA[K0∂
l
J ; Λ0]NJ

• Note here ∂l
J acts on NJ , that produces the scale change of the transformation.

Using the transformation δΦ, we find the WT operator as

ΣΛ[Φ] =
∂rSΛ[Φ]
∂ΦA

δΦA − ∂r

∂ΦA
δΦA

The relation

〈ΣΛ[Φ]〉Φ,K−1J = N−1
J 〈ΣΛ0[φ]〉φ,K−1

0 J

implies that if the WT operator vanishes at the scale Λ0, it does at any lower scale.
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2.1 The anti-field formalism a la Batalin-Vilkovisky

For a classical gauge fixed action Scl[φ] for a generic gauge theory, define an extended

action as

S̄cl[φ, φ∗] ≡ Scl[φ] + φ∗Aδφ
A

the canonical structure via the antibracket for any field variables X and Y , we define

(X,Y ) ≡ ∂rX

∂φA

∂lY

∂φ∗A
− ∂rX

∂φ∗A

∂lY

∂φA

(S̄cl, S̄cl) = 2(δScl + φ∗Aδ
2φA)

Classical master equation (CME): (S̄cl, S̄cl) = 0 ⇔ action invariance and the nilpotency.
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Generalize the consideration for S̄[φ, φ∗] that defines a quantum system via the functional

integration over φ. Under the BRST transformation of fields

δφA ≡ (φA, S̄) =
∂lS̄

∂φ∗A
,

the changes of the action and the functional measure are summed up to the quantum

master operator:

Σ̄[φ, φ∗] ≡ ∂rS̄

∂φA

∂lS̄

∂φ∗A
− ∂r

∂φA
δφA =

1
2
(S̄, S̄) − ∆S̄ ,

∆ ≡ (−)εA+1 ∂r

∂φA

∂r

∂φ∗A
.
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The system is BRST invariant quantum mechanically if the two contributions cancel:

Σ̄[φ, φ∗] = 0 . (QME)

The quantum BRST transformation as

δQX ≡ (X, S̄) − ∆X

We have two important algebraic identities without assuming QME:

δQΣ̄[φ, φ∗] = 0 ,

δ2QX = (X, Σ̄[φ, φ∗]) .

The quantum BRST transformation is nilpotent if and only if QME holds.

Also useful to remember that QME = WT identity + nilpotency
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2.2 The effective average action Γ̄B,Λ

exp
(
−W̄B,Λ[J, φ∗]

)
≡

∫
Dφ exp

(
−1

2
φ · (K0 −K)D · φ− S̄I,B[φ, φ∗] −K−1

0 J · φ
)

- The modes with Λ2 < p2 < Λ2
0 contribute to the path integral

since the factor K0 −K ∼ 1 for Λ2 < p2 < Λ2
0.

- S̄B,Λ ≡ 1
2φ · (K0 −K)D · φ+ S̄I,B differs from S̄B only in the kinetic term.

In Λ → 0, two actions are the same.

Define the effective average action as

Γ̄B,Λ[ϕΛ, φ
∗] ≡ W̄B,Λ[J, φ∗] −K−1

0 J · ϕΛ, ϕΛ(p) ≡ K0(p)
∂lW̄B,Λ[J, φ∗]
∂J(−p)

The limit of Λ → 0 leads to the ordinary generating functional and effective action

lim
Λ→0

W̄B,Λ[J, φ∗] = W̄B[J, φ∗] , lim
Λ→0

Γ̄B,Λ[ϕΛ, φ
∗] = Γ̄B[ϕ, φ∗]

where ϕ ≡ limΛ→0ϕΛ
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QME and the modified ST identity

The path integral average of the QM operator Σ̄B[φ, φ∗]

Σ̄1PI
B,Λ[ϕΛ, φ

∗] ≡ exp[W̄B,Λ[J, φ∗]]
∫

DφΣ̄Λ0[φ, φ
∗] exp

(
−S̄B,Λ[φ, φ∗] −K−1

0 J · φ
)

=
∂rΓ̄B,Λ

∂ϕA
Λ

∂lΓ̄B,Λ

∂φ∗A
+ [RΛ]BA

(
−(Γ̄(2))−1

B,Λ

∂l

∂ϕC
Λ

∂lΓ̄B,Λ

∂φ∗A
+ ϕB

Λ

∂lΓ̄B,Λ

∂φ∗A

)

[RΛ(p)]BA ≡ DBA(p)
( 1
K0 −K

− 1
K0

)
→ 0 as Λ → 0

- Σ̄Λ0[φ, φ
∗] = 0 implies the presence of a symmetry.

- Σ̄1PI
B,Λ = 0 is the modified Slavnov-Taylor identity. (Ellwanger 1994)
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Since RΛ → 0 in the limit of Λ → 0, we find

Σ̄1PI
B ≡ lim

Λ→0
Σ̄1PI

B,Λ =
∂rΓ̄B

∂ϕA

∂lΓ̄B

∂φ∗A
.

Vanishing of the last expression is the Zinn-Justin equation for the effective action Γ̄B.
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2. Anomaly

Where to find an anomaly?

- The vanishing of the WT operator implies symmetry: Σ 6= 0 for an anomalous theory.

- The WT operator Σ evolves as a composite operator.

- ghost number of Σ = 1

- We will see in an example: ΣΛ[Φ] → ghost × anomaly as Λ → ∞.

- We also know the Zinn-Justin equation may be broken by an anomaly in a similar

manner.
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3.1 QM operator as anomaly composite operator

The QM operator is a composite operator

−Λ
∂

∂Λ
Σ̄Λ = DΣ̄Λ

In the UV limit, it becomes a ghost times an anomlay

lim
Λ→∞

lim
Λ0→∞

Σ̄Λ = A[φ]

where φ is the bare field. This will be calculated explicitly later for a simple example.

Also known that

Σ̄1PI
B ≡ lim

Λ→0
Σ̄1PI

B,Λ =
∂rΓ̄B

∂ϕA

∂lΓ̄B

∂φ∗A
= A′[ϕ]

A′ satisfies the Wess-Zumino condition: (A′, Γ̄B)ϕ,φ∗ = 0
- Here, the antibracket is defined w.r.t. ϕ, φ∗.
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In the following we explain:

- The form of QM operator with finite Λ and its relation to A and A′.

- Algebraic relations satisfied by the QM operator and the effective average action.

- An explicit calculation of A
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The form of QM operator with finite Λ and its relation to A and A′.

The relation between Σ̄Λ and Σ̄1PI
B,Λ,

Σ̄Λ[Φ,Φ∗] = Σ̄1PI
B,Λ[ϕΛ, φ

∗] , K0φ
∗
A = KΦ∗

A

ϕA
Λ =

K0

K
ΦA + (K0 −K)(D−1)AB∂

lS̄Λ

∂ΦB
.

- Σ̄Λ is a functional of ϕΛ and φ∗, where ϕΛ is a composite operator by itself.

Σ̄Λ = Ā[ϕΛ, φ
∗; Λ] .

The QM operator depends on Λ via ϕΛ and coefficients.
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Consider the flow equation for Ā[ϕΛ, φ
∗; Λ],

−Λ
∂

∂Λ
Ā[ϕΛ, φ

∗; Λ] = DĀ[ϕΛ, φ
∗; Λ] ,

where

D ≡ (D−1∆)AB
(∂lS̄I,Λ

∂ΦB

∂l

∂ΦA
+

1
2
∂l

∂ΦB

∂l

∂ΦA

)
.

Since ϕΛ is a composite operator by itself, the other scale dependence of Ā[ϕΛ, φ
∗; Λ]

follows the equation (
−Λ

∂

∂Λ

)′
Ā[ϕΛ, φ

∗; Λ] = D′Ā[ϕΛ, φ
∗; Λ],

where

D′ ≡ 1
2
(−)εA+εB(εA+εC)(D−1∆)AB

(∂lϕC
Λ

∂ΦA

∂lϕD
Λ

∂ΦB

) ∂l

∂ϕD
Λ

∂l

∂ϕC
Λ

.
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Make the loop expansion of Ā. Since there is no tree-level contribution, we find

(
−Λ

∂

∂Λ

)′
Ā(1)[ϕΛ, φ

∗; Λ] = 0

for the one-loop contribution. At the one-loop level, the scale dependence originates

solely from ϕΛ .

Let us assume that the one-loop calculation is exact. Ā[ϕΛ, φ
∗] is the functional such

that limΛ→0 Ā[ϕΛ, φ
∗] = Ā′[ϕ] and limΛ→∞ limΛ0→∞ Ā[ϕΛ, φ

∗] = Ā[φ].

All the known facts are consistent with the following expression for the QM operator,

Σ̄Λ[Φ,Φ∗] = A[ϕΛ] .

The scale dependence comes solely through the composite operator ϕΛ.
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3.2 An algebraic relation

We will show the following relation for finite cutoffs Λ and Λ0:

(
AB,Λ, Γ̄B,Λ

)
ϕΛ,φ∗

= eW̄B,Λ

∫
Dφ

(
δ′QΣ̄B,Λ

)
e−S̄B,Λ−K−1

0 J·φ .

AB,Λ stands for the quantity

AB,Λ ≡ ∂rΓ̄B,Λ

∂ϕA
Λ

∂lΓ̄B,Λ

∂φ∗A
= eW̄B,Λ

∫
Dφ Σ̄B,Λe

−S̄B,Λ−K−1
0 J·φ ,

δ′Q and Σ̄B,Λ are the BRST transformation and QM operator defined with the action

S̄B,Λ respectively:

δ′QX ≡ (X, S̄B,Λ) − ∆X ,

Σ̄B,Λ ≡ 1
2
(S̄B,Λ, S̄B,Λ) − ∆S̄B,Λ .
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The difference between S̄B and S̄B,Λ vanishes in Λ → 0. Therefore, in this limit,

δ′Q → δQ, Σ̄B,Λ → Σ̄B .

We also know that in the same limit,

W̄B,Λ → W̄B, Γ̄B,Λ → Γ̄B

Sending Λ → 0, we find

(∂rΓ̄B

∂ϕA

∂lΓ̄B

∂φ∗A
, Γ̄B

)
ϕ,φ∗

= eW̄B

∫
Dφ

(
δQΣ̄B

)
e−S̄B−K−1

0 J·φ .

This relates the Wess-Zumino conditon and the algebraic relation on the QM operator.
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3.3 Evaluation of WT operator for U(1)V × U(1)A gauge theory:

WT identities and BRST transformations

Two sets of gauge sector: (Aµ, hV , cV , c̄V ) and (Bµ, hA, cA, c̄A)

SΛ0[φ] =
1
2
φK−1

0 ·D · φ+ SI,Λ0[φ]

1
2
φK−1

0 ·D · φ =
∫

p

K−1
0

[
ψ̄(−p)/pψ(p)

+
1
2
Aµ(p2δµν − pµpν)Aν − hV

(
ip ·A+

ξV
2
hV

)
+ c̄V ip

2cV

+
1
2
Bµ(p2δµν − pµpν)Bν − hA

(
ip ·B +

ξA
2
hA

)
+ c̄Aip

2cA

]
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We will explain our calculation for the axial transformation.

The BRST transformation for axial gauge symmetry

δBµ(p) = −iK0(p)pµcA(p), δc̄A = iK0(p)hA(p), δcA(p) = δhA(p) = 0

δψ(p) = −ieAK0(p)
∫

k

γ5ψ(p− k)cA(k),

δψ̄(−p) = −ieAK0(p)
∫

k

ψ̄(−p− k)cA(k)γ5 ,

δAµ(p) = δhV (p) = δcV (p) = δc̄V (p) = 0

WT operator for axial transformation:

ΣA
Λ = Σ̄A

Λ|Φ∗=0 =
∂rSΛ

∂ΦA
δΦA +

∂l

∂ΦA
δΦA
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One-loop contributions

ΣA(1)
Λ =

∂rS
(1)
Λ

∂ΦA
δΦA +

∂rSΛ

∂ΦA

[
δΦA

](1)

+
[ ∂l

∂ΦA
δΦA

](1)

• The high mometum modes (Λ2 < p2 < Λ2
0) produce the one-loop action S

(1)
Λ .

• K−1δΦA evolves as a composite operator. For example,

δψ(p) = −ieAK(p)
∫

k

γ5[ψ(p− k)]ΛcA(k)

[
ψ(q)

]
Λ

= ψ(q) +
K0(q) −K(q)

/p

∂lSI,Λ

∂ψ̄(−q)

– K(p) in δφ(p) restricts the momentum, p2 < Λ2

– Propagators in SI,Λ have K0−K to allow only high momentum modes to propagate.
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The momentum integration in∫
p

∂l

∂ψ(p)

[
δψ(p)

](0)

+
∫

p

∂l

∂ψ̄(p)

[
δψ̄(p)

](0)

is restricted to p2 ∼ Λ2.

• It was found that the above terms produce non-zero contributions to ΣA(1)
Λ in

Λ,Λ0 → ∞ limit.

ΣA(1)
Λ → eA

48π2

∫
x

cA(x) εµνρσ

(
e2V F

V
µν(x)F

V
ρσ(x) + e2AF

A
µν(x)F

A
ρσ(x)

)
ΣV (1)

Λ → 2 × eAe
2
V

48π2

∫
x

cV (x)εµνρσF
A
µν(x)F

V
ρσ(x)

Adding a counter term to the Wilson action, we may keep the vector symmetry.
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Summary

• Σ̄Λ changes along the flow as a composite operator.

• When a gauge symmetry exits, we find an expression, Σ̄Λ = 0.

– Σ̄Λ|φ∗=0 = 0 is the Ward-Takahashi identity (cutoff dependent).

• For anomalous symmetry, Σ̄Λ = A is the anomaly composite operator.

– If the one loop result is exact, the cutoff dependence of A comes solely from ϕΛ

– Discussed the Wess-Zumino condition

– An explicit calculation is explained.
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