The phase diagram of QCD: Phase structure and Thermodynamics

&

Some remarks on Kugo-Ojima, and Dynamical Hadronisation

Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute

Kyoto, September 7th 2011

Cold quantum gases

Constants

$$egin{aligned} &\hbar = 1 & k_B = 1 \ &1.01 imes 10^{-34} \, {
m J}\,{
m s} & 1.38 imes 10^{-23} \, {
m m}^2 \, {
m kg} \, {
m s}^{-2} \, {
m K}^{-1} \ &2m = 1 \ &3.00 imes 10^8 \, {
m m} \, {
m s}^{-1} \end{aligned}$$

$100\mathrm{MeV} = 1.16\times10^{12}\mathrm{K}$

$${
m T_c} \sim 10^{12} {
m K}$$

Phase diagram of QCD

Phase diagram of QCD

Simulation of heavy ion collision

STAR, RHIC

BEC-BCS cross-over

Eagles '69, Leggett '80

Fermions with attractive interactions

(CHO@SCIENCE'03)

Bound molecules of two atoms on microscopic scale

Regal et al '04

Outline

QCD & cold quantum gases primer

Confinement & chiral symmetry breaking in QCD

Phase diagram of QCD

Summary & outlook

QCD & cold quantum gases primer

QCD

QCD, asymptotic freedom and all that

Field content of QCD

•Gluons: colour-charged gauge fields A^{a}_{μ}

 $\mathbf{F}^{\mathbf{a}}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + \left(gf^{abc}A^{b}_{\mu}A^{c}_{\nu}\right)$

Fieldstrength

-Quarks: fermions $\psi^{\mathbf{f}}$ with flavours \mathbf{f}

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

masses via Higgs mechanism

QCD, asymptotic freedom and all that

Action and interactions

Interactions

QCD, asymptotic freedom and all that

Running coupling at low and high energies

Energy density

Bali et al. '94

ightarrow string breaking at m rpprox 1 fm

Order parameter $\sim '\!\langle q \rangle'$

$$\Phi = e^{-\frac{1}{2}\beta F_{q\bar{q}}(\infty)}$$

•Confinement: $\Phi = 0$

•Deconfinement: $\Phi \neq 0$

Mechanism?

not fully resolved

Chiral symmetry breaking

chira	symmetry

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

chiral symmetry breaking: $\Delta m\approx 400\,MeV$

2 light flavours, one heavy flavour 2+1

chiral symmetry breaking

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

Chiral symmetry breaking

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

chiral symmetry breaking: $\Delta m\approx 400\,MeV$

2 light flavours, one heavy flavour 2+1

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

$$\langle \bar{q}q \rangle \neq 0$$

mass term: $\left< ar{q} q \right> ar{q} q$

Chiral symmetry breaking

cool atoms

Condensation phenomena

Toolbox for strongly correlated systems

FunMethods: FRG-DSE-2PI-...

Lattice

Toolbox for strongly correlated systems

Models ab initio continuum FunMethods: FRG-DSE-2PI-... ab initio Lattice

Toolbox for strongly correlated systems

Functional RG in gauge theories

Wetterich '93

$$k\partial_k\Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \underbrace{\Gamma_k^{(2)}[\phi] + R_k(p)}_{\Gamma_k^{(2)}[\phi] + R_k(p)} \quad \text{RG-scale k: } t = \ln k$$

$$\partial_t\Gamma_k[\phi] = \frac{1}{2} \underbrace{\bigcirc^{\otimes}}_{O} - \underbrace{\bigcirc^{\otimes}}_{O}$$
• Fermions are straightforward though 'physically' complicated
• no sign problem numerics as in scalar theories
$$\begin{array}{c} \text{FunMethods:}\\ \text{FRG-DSE-2PI-...}\\ \text{chiral fermions} reminder: Ginsparg-Wilson fermions from RG arguments} \end{array}$$

• **bound states via dynamical hadronisation** effective field theory techniques

Complementary to lattice!

e.g. finite volume scaling: Braun, Klein, Piasecki '10

Confinement in Yang-Mills theory

Order parameter $\sim \langle q \rangle'$ $\Phi \sim e^{-\frac{1}{2}\beta F_{q\bar{q}}(\infty)}$ Confinement: $\Phi = 0$ •Deconfinement: $\Phi \neq 0$ **Polyakov loop** $\Phi = \frac{1}{3} \langle \operatorname{Tr} \mathcal{P} \exp\{ig \int_0^{1/T} dx_0 A_0\} \rangle$

FRG+DSE+2PI+lattice

Braun, Gies, JMP '07

confinement criteria from FRG: Braun, Gies, JMP '07 + Eichhorn, Gies, JMP '10

tightened confinement criterium from FRG & DSE: Fister, JMP, in preparation

Perturbation theory

Gross, Pisarski, Yaffe '81 Weiss '81

$$V^{\rm UV}[A_0] = \frac{1}{2\Omega} \operatorname{Tr} \log S^{(2)}_{AA}[A_0] - \frac{1}{\Omega} \operatorname{Tr} \log S^{(2)}_{C\bar{C}}[A_0]$$

FRG+DSE+2PI+lattice

Braun, Gies, JMP '07

 $V[A_0] = -\frac{1}{2} \operatorname{Tr} \log \langle AA \rangle [A_0] + O(\partial_t \langle AA \rangle) + \operatorname{Tr} \log \langle C\bar{C} \rangle [A_0] + O(\partial_t \langle C\bar{C} \rangle)$ $k \partial_k$ $\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$ 0000 000 000 $+\frac{1}{2}$ 000($+\frac{1}{2}$ 7000 000 $-\frac{1}{2}$ 000000) 7000000 $k \partial_k \longrightarrow -^{-1}$ $-\frac{1}{2}$

FRG+DSE+2PI+lattice

Braun, Gies, JMP '07

Confinement not directly sensitive to size of $lpha_s$

Order parameter SU(3)

Braun, Gies, JMP '07

$$T_c = 276 \pm 10 \,\mathrm{MeV}$$
 $T_c/\sqrt{\sigma} = 0.658 \pm 0.023$

lattice :
$$T_c/\sqrt{\sigma} = 0.646$$

Order parameter SU(2)

Braun, Gies, JMP '07

Confinement criteria!

infrared behaviour of propagators & confinement

IR gluon

IR ghost

$$p^2 \langle A A \rangle (p^2) \propto (p^2) \kappa_A$$

 $p^2 \langle C \bar{C} \rangle (p^2) \propto (p^2) \overset{\kappa_C}{\smile}$

Confinement

Confinement criteria!

Braun, Gies, JMP '07

IR gluon

 $p^2 \langle A A \rangle (p^2) \propto (p^2)^{-\kappa_A}$

IR ghost

 $p^2 \langle C \bar{C} \rangle (p^2) \propto (p^2)^{-\kappa_C}$

scaling	$\kappa_A = -2\kappa_c : \kappa_C \simeq 0.595$	$\kappa_C < 0.605$	$\kappa_C > 0$
decoupling	$\kappa_A = -1 \& \kappa_c = 0$		

confinement infrared stability Eichhorn, Gies, JMP '10

Fister, JMP, in prep.

Chiral symmetry breaking in QCD

Chiral symmetry breaking

Chiral symmetry breaking

A glimpse at chiral symmetry breaking in QCD within the FRG

Flow for four-fermion coupling $\hat{\lambda}_\psi = \lambda_\psi k^2$ with infrared scale k

$$k\partial_k \hat{\lambda}_{\psi} = 2\hat{\lambda}_{\psi} + A\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}^2 + B\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}\alpha_s + C\left(\frac{T}{k}\right)\alpha_s^2 + \cdot$$

Dynamical hadronisation

Dynamical hadronisation

QCD meets cold quantum gases

Dynamical hadronisation

Flow for four-fermion coupling $\hat{\lambda}_\psi = \lambda_\psi k^2$ with infrared scale k

Dynamical hadronisation

Cold quantum gases

Phase diagrams

vanishing density

Full dynamical QCD: N_f = 2 & chiral limit

FRG+DSE+2PI+lattice

Full dynamical QCD: N_f = 2 & chiral limit

FRG+DSE+2PI+lattice

Braun, Haas, Marhauser, JMP '09

Beware: $\Phi_{\text{FRG}} \neq \Phi_{\text{lattice}} \longrightarrow T_{\text{conf,FRG}} \lesssim T_{\text{conf,lattice}}$

Full dynamical QCD: N_f = 2 & chiral limit

FRG+DSE+2PI+lattice

Braun, Haas, Marhauser, JMP '09

$$T_{\chi} \simeq T_{\rm conf} \simeq 180 {\rm MeV}$$

Full dynamical QCD: N_f = 2

FRG+DSE+2PI+lattice

Phase diagram of cold quantum gases

FRG + DSE

MC: Burovski, Prokof'ev, Svistunov, Troyer '06 Bulgac, Drut, Magierski '06

Improve approximations:

different channels/multi-scatterings

momentum/frequency-dependencies

Physics differences

finite size-finite volume effects

finite chemical potential

• Roberge-Weiss symmetry: $\theta \rightarrow \theta + 1/3$

Dual order parameter

Gattringer '06 Synatschke, Wipf, Wozar '07 Bruckmann, Hagen, Bilgici, Gattringer '08

Fischer, '09; Fischer, Maas, Müller '10	
Braun, Haas, Marhauser, JMP '09	imaginary chemical potential

necessary for dynamical quarks

FRG+DSE+2PI+lattice

FRG+DSE+2PI+lattice

FRG+DSE+2PI+lattice

Braun, Haas, Marhauser, JMP '09

dual order parameters & imaginary chemical potential

FRG+DSE+2PI+lattice

$$\psi_{\theta}(t+\beta,\vec{x}) = -\psi(t,x)$$

FRG+DSE+2PI+lattice

Braun, Haas, JMP, in prep.

FRG+DSE+2PI+lattice

FRG+DSE+2PI+lattice

Polyakov-extended Quark-Meson Models

Potential

Polyakov-loop Potential

 $U[\Phi, \bar{\Phi}]$

Fit to YM-thermodynamics

Fermionic fluctuations

$\Omega[\Phi,\bar{\Phi},\sigma,\vec{\pi}]$

One loop computation

Mesonic potential

Fit of meson phenomenology

Meisinger, Ogilvie '96

Pisarski '00

dynamical Polyakov-extended models

Polyakov-extended models as reduced QCD

Polyakov-extended models as reduced QCD

FRG+DSE+2PI+lattice+model

thermodynamics

thermodynamics

PQM MF & full glue potential: 2+1 flavors

0.8 improved – previous 0.6 hotQCD Cheng et al., PRD 81, 2010 Wuppertal-Budapest Borsanyi et al., **⊕** 0.4 im nat JHEP 9, 2010 0.2 0 0.6 1 1.2 8.0 T/T_Φ improved previous hotQCD 3 Cheng et al., PRD 81, 2010 Wuppertal-Budapest [▶]T 2 Borsanyi et al., JHEP 11, 2010 100 200 250 300 150

T [MeV]

Haas, JMP, Schaffner-Bielich, Stiele, in prep.

beyond MF: JMP, Schaefer, work in progress

Summary & Outlook

Summary & outlook

Yang-Mills flows

- propagators in quantitative agreement with lattice
- Polyakov loop potential & conf-deconf phase transition

-QCD

- conf-deconf & chiral phase transition at imaginary chemical potential
- first steps at real chemical potential
- Outlook
 - •2+1 flavours, baryons, phenomenology
 - two colour QCD, chiral magnetic effect