26.12.2011@超新星研究会(京大基研)

クォーク=ハドロン相転移による 超新星爆発での重元素合成

西村 信哉 バーゼル大学(スイス)

- <u>イントロダクション</u>
 - クォーク=ハドロン相転移による超新星と
 その元素合成環境について
- 計算の詳細と結果
 - 放出物全体の組成
 - 中性子と陽子過剰の元素合成
- <u>まとめ</u>

<u>クォーク・ハドロン相転移による超新星</u> コアバウンス後に原始中性子星がQCD相転移するシナリオ: Sagert et al. (2009)、Fischer et al. (2011)

<u>爆発モデルからみる放出物と組成</u>

爆発モデル各層の進化

- <u>r-process</u>(中性子過剰、あるいは高エントロピー)
 - (通常の) 超新星爆発 (> 10M_☉)
 - •SASI による爆発
 - ・ニュートリノの影響によりYe > 0.48

(Fujimoto et al. 2011)

- ・(ONeMg星の)超新星爆発(EC 超新星)
 - ・1Dでも2Dでも爆発)
 - ・2D だと Y_e > 0.4; weak r-process の可能性 (Wanajo 2009, 2011)
- ・他、磁場や回転などによる超新星
 - ・より中性子過剰の物質が放出される可能性あり

<u> ッp-process</u>:陽子過剰 <u>かつ</u> ニュートリノ放射環境

- ・超新星コア付近の陽子過剰な環境
 - $\cdot \nu$ p-process (Fröhlich 2006, Pruet 2006, Wanajo 2006)

Ye (10,000km)

0 46

<u>r-process の期待</u>

モチベーション

例

・爆発モデルの成功 (Sagert 2009)

- ・ニュートリノでの観測について (Dasgupta 2010)
- ・爆発モデルの詳細解析 (Fischer 2011)
- <u>放出元素の宇宙への影響 NEW!</u>

クォーク、ハドロン物理から爆発的天体現象

シミュレーション、元素合成まで

近年、注目されている素・核・宇宙の融合点

クォーク力学・原子結構造に基づく	シオージガ子・原子板構造に巻	シオーシガチ・原于使構造に巻うく爆光的大体現象と元素古成		
http://aspht1.ph.noda.tus	ac.jp/bridge_a03/index.html	≙▼C <mark>8</mark> *		
	クォーク力学・原子核構造に基づ	づく爆発的天体現象と元素合成		
平成20年度から開始され 「クォーク力学・原子核	た新学術領域研究(研究領域提案型) 「素核宇宙顧 構造に基づく爆発的天体現象と元素合成」 について	合による計算科学に基づいた重層的物質構造の解明」 の情報です。	の 計画研究	
トップ/お知らせ われた				
概要	2			
• 研 9	会「素核宇融合による計算機物理学の進展 - ミ	クロとマクロの架け橋 - 」 💻		
新学 資料 「男	術領域「素核宇宙融合」とHPCI戦略プログラム 核宇融合による計算機物理学の進展 - ミクロとマク ご参加ください	分野5に関連した研究会 クロの架け橋 - 」が開催されます。		
研究会など日開	:2011年12月3日午後1時開始~12月5日	(月)15:00終了(予定)		
リンク 単分 主保	場所:合歓の郷 http://www.nemunosato.com/in :新学術領域研究「素核宇宙融合による計算科学に	dex.html 基づいた重層的物質構造の解明」		
メンバーのみ	日下で「戦略ノロシラム分野5「初員と千田の起源	泉と1月2日」		

<u>mass zones: 4つの成分</u>

zone #	$M_{\#} \ [10^{-2} M_{\odot}]$	$\Delta \overline{M_{\#}} \ [M_{\odot}]$	$Y_{\rm e,NSE}$	$t_{\rm ej}$
001 - 014	0.000 - 0.208	1.496×10^{-4}	0.20	
015-019	0.210 - 0.216	1.474×10^{-5}	~ 0.55	$1.5 \sim$
020 - 050	0.217 - 0.232	1.063×10^{-5}	~ 0.33	~ 0.5
051 - 120	0.250 - 1.482	1.786×10^{-4}	$0.33 \sim 0.50$	~ 0.5

 $M_{\#}:$ mass coordinates relative to the innermost zone of $1.48 M_{\odot}$ $\Delta \overline{M_{\#}}:$ the averaged mass of the zone $Y_{\rm e,NSE}:$ $Y_{\rm e}$ at the end of NSE (below T=9 GK) $t_{\rm ej}:$ ejection time after the bounce

- ・原始中性子星(放出されない)
- ・ニュートリノ駆動風
 - ・原始中性子星からの風
- •delayed 成分
 - ・第二の衝撃波で放出
- •prompt 成分
 - (放出質量の大部分~98%)

<u>爆発モデルと元素合成シミュレーション</u> <u>爆発モデル</u>

- •流体力学:AGILE-BOLTZTRAN コード(Liebendörfer et al. 2004)
 - ・ (球対称) 一般相対論的ニュートリノ輸送 + マイクロ物理
- ・EOS: Shen EOS(核物質) + MIT bag model(クォーク物質) ・親星: 10.8 M₀ by Woosley et al. 2002

元素合成

- ・ 爆発モデルを元にポストプロセス計算
- ・初期進化は流体シミュレーションの物理量(NSE 状態)
- (フル)核反応ネットワーク(4000核種以上)
 - 反応率一般:REACLIB (Rauscher&Thielemenn 2000)
 - 質量公式(理論): FRDM (Möller et al. 1995)
 - ・ 自発、β-delayed 核分裂
- ニュートリノ反応
 - ・放出物質と原始中性子星の進化に応じてダイナミックに計算
 - ・
 核子との反応のみ考慮(Qian & Woosley 1996)

<u>エントロピー と Ye :NSE終了(T = 9 GK)</u>

<u> 組成分布 (α-freezeout)</u>

(c) innermost (proton rich)

<u> 組成分布 (α-freezeout)</u>

0.25 0.30 0.35 0.40 0.45 0.50 enclosed mass, $[10^{\text{-2}}~\text{M}_{\odot}]$

最終組成:核ゾーン毎に

<u>内側(再加速される成分)</u>

典型的な νp -process (ニュートリノ反応なしと比較)

<u>integrated final abundances</u> 観測との比較(太陽系、weak r-process)

<u>まとめ</u>

<u>r-process</u> 元素合成について

- reproduce $A \sim 100$ r-element (weak r-process)
- main r-process のためにはは Y_e が 40% マイナス
- (不定性の範囲内でも main r-process はムリ)
- 別の親星、EOS、多次元モデル etc. があれば。。。
- <u>ニュートリノ駆動風について</u>
 - 今回の爆発モデルだと、通常の超新星と同様の環境
 - A ~ 60 を越えて A ~ 90 の陽子過剰安定核を生成
 - EOS によって Y_e の進化やニュートリノ物理量
 (光度、平均エネルギー)変わってくればおもしろい