核反応熱を組み込んだ 多次元ニュートリノ爆発計算

中村 航 (Nakamura, Ko)

National Astronomical Observatory of Japan

Collaborators: T. Takiwaki, T. Kuroda, K. Kotake (NAOJ) N. Nishimura (Univ. of Basel/GSI)

SN11 @ YITP December 26-28, 2011

Outline

- Core-collapse supernova explosion
 - collapse, bounce, and stalled
- Neutrino-driven explosion model
 - neutrino heating (and cooling)
 - Standing Accretion-Shock Instability (SASI)
- Shock revival and enhancement of expl. energy by nuclear reactions
 - 1-D and 2-D simulations for 11.2/15.0 Msun model
 - using ZEUS-MP code incl. nuclear reaction network
- 3-D simulations (primitive)
 - MPI-AMR code w.o. network
- Summary

Neutrino-driven SN explosion mechanism

- Gravitational binding energy of the collapsing core (>~10⁵³ erg) >> Typical SN explosion energy (~10⁵¹ erg)
- Neutrinos carry away most of the energy, but ..
- A small fraction of emitted neutrinos can interact with the matter behind a shock, deposit energy, and revive the stalled shock wave.
- Hydrodynamic instabilities
 enhance the neutrino heating.

Previous studies of SASI+v-induced explosion

• Marek & Janka (2009)

• Scheck et al. (2008)

Progenitor	Group (Year)	Mechanism	Dim. (Hydro)	t_{exp} (ms)	$\frac{E_{\exp}(B)}{@t_{pb} (ms)}$	ν transport (Dim, $O(v/c)$)
11.2 <i>M</i> _☉	MPA[76] (2006)	v-driven	2D (PN)	~100	~ 0.005 (~220)	"RBR" Boltz- mann, 2, <i>O</i> (<i>v</i> / <i>c</i>)
(WHW02[72])	Princeton+ [77] (2007)	Acoustic	2D (N)	≳1100	~0.1* (1000)	MGFLD 1, (N)
	NAOJ+ [78](2011)	v-driven	3D (N)	~100	0.01 (300)	IDSA 1, (N)
12 <i>M</i> _☉ (WHW02[72])	Oak Ridge+ [79](2009)	v-driven	2D (PN)	~300	0.3 (1000)	"RBR" MGFLD $1, O(v/c)$
13 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	eutrin	0(+	SAS	$S_{(14)}^{(14)}$	MGFLD 1, (N)
(NH88[71])	nucle	ar-b	urn	ing	mo	del ^{DSA} , (N)
15 <i>M</i> _☉ (WW95[73])	MPA[81] (2009)	v-driven	2D (PN)	~600	0.025 (~700)	Boltzmann $2,O(v/c)$
(WHW02[72])	Princeton+ [77]	Acoustic	2D (N)	-	- (-)	MGFLD 1, (N)
	OakRidge+ [79](2009)	v-driven	2D (PN)	~300	~ 0.3 (600)	"RBR" MGFLD 1, <i>O</i> (<i>v</i> / <i>c</i>)
20 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	Acoustic	2D (N)	≳1200	~0.7* (1400)	MGFLD 1, (N)
25 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	Acoustic	2D (N)	≳1200	- (-)	MGFLD 1, (N)
	Oak Ridge+ [79](2009)	v-driven	2D (PN)	~300	~ 0.7 (1200)	"RBR" MGFLD 1, <i>O</i> (<i>v</i> / <i>c</i>)

List of recent neutrino-radiation hydrodynamic simulations. (Table 1 of Kotake 2011 *arXiv:1110.5107*)

Numerical scheme

Basic equations (Murphy & Burrows '08)

$$\frac{d\rho}{dt} + \rho \nabla \cdot \boldsymbol{v} = \boldsymbol{0},$$

$$\rho \frac{d\boldsymbol{v}}{dt} = -\nabla p - \rho \nabla \Phi$$

$$\frac{\partial e}{\partial t} + \nabla \cdot \left[(e+p)\mathbf{v} \right] = -p\mathbf{v} \cdot \nabla \Phi + \rho (H - C + \mathbf{Q})$$

$$\frac{dY_{\rm e}}{dt} = Y_{\rm e} \text{ prescription / }\Gamma_{\rm e}$$
$$\Phi = -\frac{GM_{\rm in}}{r},$$

Neutrino irradiation

$$Lv_{\rm e} = L\bar{v}_{\rm e} = \frac{L_0}{\rm exp}(-t_{\rm pb}/t_{\rm d})$$

$$C = 1.399e20 \times (T / 2MeV)^{6}$$

× $(Yn + Ye) e^{-\tau}$
[erg/g/s]

Q : Nuclear reaction energy ←Network calculation incl. He-Ni

SASI

Progenitor model

 $v_r(r,\theta) = v_r^0(r,\theta) + \delta v_r$ $\delta v_r = 0.01 \times rand \times v_r^0(r,\theta)$

derived from evolutionary calculation for a star with M=11.2-15.0 Msun, Z=Zsun

1-D simulation

Neutrino(+SASI)+**nuclear-burning** model 2-D simulation

Snap shots of entropy distributions from our simulations with (*left*) and without (*right*) nuclear network calculation.

Example) $Lv_e = L_0 \exp(-t_{pb}/t_d) \leftarrow L_0 = 2.4 \times 10^{52} \text{ erg/s}, t_d = 1.1 \text{ s}$

Time after core bounce:

Neutrino(+SASI)+nuclear-burning model

- -15Msun model
- -2-dimensional axi-symmetric coordinates
- $-300(r)*128(\theta)$ covering r = 0-5000 km $\theta = 0-\pi$

-ZEUS-MP code equipped with nucl. network

With/w.o. nucl. burning

- Si & O burning
- "nuclear reaction-aided" supernova explosion
- corresponding parameter region is narrow, but ..

Contribution of nuclear reactions to explosion energy

- Explosion energy
 - red: explosion energy = $\Sigma(\text{Ekin} + \text{Eint} + \text{Egrv})_i$ for $vr_i \& \text{Etot}_i > 0$
 - green: net burning energy
 - blue-dotted: explosion energy in the case without nuclear burning

Summary

- 重力崩壊型超新星においてニュートリノ爆発モデルは有力であるが、先行研究では典型的な爆発エネルギー(10⁵¹erg)を再現できていない
- ある種の流体不安定性や空間多次元効果がニュートリノ加熱の効率を上げるという報告はあるが、現時点では不十分
- 核反応ネッワークを組み込んだ流体計算によって、反応エネルギーの流体運動 への影響およびモデル/空間次元/ニュートリノ特性への依存性を調べた
 - 11.2 Msun (WHW02), & 15.0 Msun (WW95, WHW02, LC06) models
 - nuclear network including 13 alpha-nuclei from He to Ni.
 - simple treatment of neutrino heating
- 1,2次元計算の結果

11.0

- 爆発しやすさ: WHW-11 > WW-15 > LC-15 > WHW-15、2次元>1次元
 "核反応を入れることによって"爆発する v パラメータ領域
 - すべてのモデルで核反応による爆発エネルギーの増加(1次元>2次元)
- ・ 3次元計算に向けて

3.0

- AMR-MPIコード(12/27黒田さん)を用いて計算中
- 核反応による加熱効率は上がる?