

状態方程式の違いは **発症どのくらい影響を及ぼすのか?**

KE^{4,5}, TOMOYA TAKIWAKI⁴, AND KATSUHIKO SATO⁶

011

諏訪 雄大

(京大基研)

0

Core-collapse supernovae

- * 宇宙で最も激しい爆発現象の一つ
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M \odot c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- * 中性子星/ブラックホール形成
- * ガンマ線バースト形成

* 物理学における既知のすべての相互作用が重要

•巨視的物理	•微視的物理
▶重力	▶弱い相互作用
core collapse	neutrino physics
▶電磁気力	▶強い相互作用
pulsar, magnetar,	equation of state of dense matter
magnetorotational explosion	

2011年12月28日水曜日

Core-collapse supernovae

- * 宇宙で最も激しい爆発現象の一つ
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M \odot c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- * 中性子星/ブラックホール形成
- * ガンマ線バースト形成

◆ 物理学における既知のすべての相互作用が重要

Finite temperature EOSs

Lattimer & Swesty (LS) (1991)

- based on compressible liquid drop model
- variants with K=180, 220, and 375 MeV
- H.Shen et al. (1998, 2011)

20

2011年12月28日水曜日

- relativistic mean field theory (TM1)
- including hyperon component (~2011)

- Hillebrandt & Wolff (1985) *
 - Hartree-Fock calculation
- G.Shen et al. (2010, 2011) *
 - relativistic mean field theory (NL3, FSUGold)
- Hempel et al. (2011) *
 - relativistic mean field theory (TM1, TMA, FSUGold)

		incompressibility K [MeV]	symmetry energy J (S) [MeV]	slope of symmetry energy L [MeV]	
	LS	180, 220, 375	29.3		
	HShen	281	36.9	111	
	HW	263	32.9		
	GShen	271.5 (NL3) 230.0 (FSU)	37.29 (NL3) 32.59 (FSU)	118.2 (NL3) 60.5 (FSU)	$E(x,\beta) = -E_0 + \frac{1}{18}Kx^2 + \frac{1}{162}K'x^3 + \frac{1}{16}K'x^3 + \frac{1}{16}K'x^3$
	Hempel	318 (TMA) 230 (FSU)	30.7 (TMA) 32.6 (FSU)	90 (TMA) 60 (FSU)	$+\beta^2\left(J+\frac{1}{3}Lx+\ldots\right)+\ldots,$
	/12/27		お新足爆発と数値	<u></u>	Δ Π 3 / ⁻

Equation of state

The "standard" equation of states (EOSs) in supernova community

400

350

+LS375

- Lattimer & Swesty EOS (liquid drop)
- Shen EOS (relativistic mean field)

2011/12/27

超新星爆発と数値シミュレーション@京大基研

4/16

Studies on EOS dependence

Neutrino-driven explosion

Recently, we have successful exploding models driven by neutrino heating

2011/12/27

超新星爆発と数値シミュレーション@京大基研

6/16

EOS and shock evolution from H.-Th. Janka's presentation 2D Explosions of 11.2 M_{sun} star : Test of EoS Influence Simulations for 3 different nuclear EoSs: • neutron star radius [km] 05 05 09 09 Lattimer & Swesty (L&S), Hillebrandt & Wolff (H&W), Shen et al. "Softer" (L&S) EoS and thus more compact L&S • H&W PNS leads to earlier explosion Shen 1500 100 200 300 400 500 0 time [ms] shock radius [km] 3.0 1000 explosion energy [10⁴⁹ erg] 2.5 L&S 2.0 H&W L&S Shen Shen 1.5 500 1.0 0.5 0 0.0 100 200 200 500 300 400 300 400 0 100 500 0 time [ms] time [ms] (Marek & THJ, 2009, in preparation) 19/24 2011

EOS and shock evolution

from H.-Th. Janka's presentation

16

2D Explosions of 11.2 M_{sun} star : Test of EoS Influence

2011年12月28日水曜日

2011

Numerical simulation

- * EOS: LS180, (LS220,) LS375, and Shen
- * Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- Hydrodynamics + Neutrino transfer

$$\frac{df}{dt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) - \frac{v}{c r} \right] D \frac{\partial f}{\partial E}$$
$$= j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right]$$

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino
- * progenitor: 15 Mo (Woosley & Weaver 95)

2011/12/27

2011年12月28日水曜日

空間次元 Blondin+, 07 • Iwakami+, 08 3次元 Mikami+, 08 Scheidegger+, 08 Nordhaus+, 10 Burrows+, 06 Buras+, 06 Kotake+, 03 Yamada & Sato, 94 2次元 (軸対称) Blondin & Mezzacappa, 03 Ohnishi+, 06 Obergaulinger+, 05 Murphy+, 08 Takiwaki+, 09 Rampp & Janka, 00 Liebendörfer+, 01 1次元 (球対称) Thompson+, 03 Sumiyoshi+, 05 なし(断熱) 冷却のみ 輻射輸送 or 手で加熱 ニュートリノ

2011/12/27

超新星爆発と数値シミュレーション@京大基研

9/16

空間次元 Blondin+, 07 Iwakami+, 08 3次元 Mikami+, 08 Scheidegger+, 08 Nordhaus+, 10 Burrows+, 06 Buras+, 06 Kotake+, 03 Yamada & Sato, 94 2次元 (軸対称) Blondin & Mezzacappa, 03 Ohnishi+, 06 Suwa+, 10 Obergaulinger+, 05 Murphy+, 08 Takiwaki+, 09 Rampp & Janka, 00 Liebendörfer+, 01 1次元(球対称) Thompson+, 03 Sumiyoshi+, 05 なし(断熱) 冷却のみ 輻射輸送 or 手で加熱 ニュートリノ

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

Entropy evolution

LS180

Shen

超新星爆発と数値シミュレーション@京大基研

2011年12月28日水曜日

Shock radius

LS180 and LS375 succeed the explosion Shen EOS fails

2011/12/27

2011年12月28日水曜日

Dispersion of the moment

$$cf. \ \frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla (\cdot \rho \boldsymbol{u} \boldsymbol{u} + P) = 0$$

2011/12/27

2011年12月28日水曜日

超新星爆発と数値シミュレーション@京大基研

Dispersion of the moment

Protoneutron star radii

from H.-Th. Janka's presentation

2D Explosions of 11.2 M_{sun} star : Test of EoS Influence

2011年12月28日水曜日

Protoneutron star radii

超新星爆発と数値シミュレーション@京大基研

2011/12/27

Summary

- We perform axisymmetric simulations of a corecollapse supernova driven by the neutrino heating and investigate the dependence on the equation of state
 - Lattimer & Swesty EOS: explosion
 - Shen EOS: failure

- * The symmetry energy would have greater impact than the incompressibility
- * The difference of the incompressibility does not affect the dynamics very much at least with the current setup

- * 状態方程式のどの物理量の違いが最も重要なのか、 はまだよく分からない
 - * 圧力の違い?
 - 化学組成? ⇔ weak rate?
- * そもそも超新星モデリングには何が足りていない?
 - * 多次元への方向性 (Takiwaki, Kotake, & YS 12, Sumiyoshi+12)
 - ニュートリノ素過程にまだ調べる余地はないのか? (YS+11)
 - "標準シナリオ"以外の可能性の模索
- * 超新星の生成物から迫る?
 - 中性子星/ブラックホール (Fryer+2011, Belczynski+11)
 - ガンマ線バースト

2011年12月28日水曜日