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近年様々な数値計算で超新星爆発の報告がなされている。	  
１次元球対称では爆発しないが、多次元にすると爆発する。　　　	

 Neutrino	  Driven	  Explosion	  
	  	  	  	  	  	  	  	  	  	  	  	  	  2D	  	  	  	  :　Buras+,	  ’06,	  Marek&Janka,’09,	  Suwa+,’10	  

	  	  	  3D	  	  	  	  :	  	  	  Takiwaki+,’11	  
 Acous)c	  mechanism	  
	  	  	  	  	  	  	  2D	  	  	  	  :　Burrows+,	  ’06	  
 Magneto-‐rota)onal	  Explosion	  
	  	  	  	  	  	  	  	  	  2D:Yamada&Sawai,’04,Kotake+’05	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,Burrows+’07,Takiwaki+’09	  
	  	  	  	  	  	  	  	  	  3D:Mikami+,’08,Scheidegger+,’10,KT&Umeda,’10	  　	  

1.	  これからの超新星数値計算へ向けて	  



Buras+,’06	

Marek&Janka,’09	

15Msun	

11.2Msun	

Takiwaki+,’11	

1.	  これからの超新星数値計算へ向けて	  

13Msun	

Suwa+,’10	

現在までの爆発は軽い星に限定。	  
より重い星へと議論を移していく場合、

一般相対論が必要	



過去の計算で、GRはどのように結果に影響を及ぼしていたか？	

1.	  これからの超新星数値計算へ向けて	  

Takahara&Sato,’84	

GRの効果は爆発に有利に働く場合もある	



Newtonian	

GR	

１次元では、爆発に不利に働く	

Liebendorfer+,’01	

過去の計算で、GRはどのように結果に影響を及ぼしていたか？	

1.	  これからの超新星数値計算へ向けて	  



1.	  これからの超新星数値計算へ向けて	  

Buras+,’06	

Post-‐Newtonian	

Newtonian	
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Post-‐Newtonianの２次元計算では	  
有利に働いている	

過去の計算で、GRはどのように結果に影響を及ぼしていたか？	



①  一般相対論　　　　	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (BSSN方式)	  
②  相対論的理想磁気流体	  	  	  	  	  	  	  (CT法)	  
③  ３次元AMR	  
④  ニュートリノ輻射   　　　　　　　　　　　　　　　　　　　

(冷却項(leakage)+加熱項(truncated	  method))	  

コードの概要	

Kuroda&	  
Umeda,’10	

2.	  GR-‐Radia)on-‐(M)HD	  CODE	  の紹介	  

①  一般相対論　　　　	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (BSSN方式)	  
②  相対論的理想磁気流体	  	  	  	  	  	  	  (CT法)	  
③  ３次元AMR	  
④  ニュートリノ輻射   　　　　　　　　　　　　　　　　　　　

(冷却項(leakage)	  
	  	  	  	  	  	  +加熱項(truncated	  method))	  

Sekiguchi,’10	

Shibata+,’11	
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Fig. 14.— Schematic picture of energy momentum exchange. Trapped-neutrinos (denoted by νtrap)
are always coupled with matter and thus their temperatures are the same as matter temperature.
Cooling term Qµ,C can be divided into two parts Qµ,C

diff and Qµ,C
intr . Qµ,C

diff represents the energy dif-
fusion rate from trapped neutrinos and Qµ,C

intr is the energy generation rate due to pair processes of
matter. Streaming neutrinos (denoted by νstream) are decoupled from matter and deprive energy
and momentum through Qµ,C , while they heat matter with heating rate Qµ,H . Dashed line rep-
resents the neutrino sphere and most of neutrinos are trapped by matter (i.e., trapped-neutrinos)
inside the neutrino sphere.

Ruffert,’96,Rosswog,’03,	  
Sekiguchi,’10	
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pair annihilation Qe−e+→νν̄ (Cooperstein et al. 1986), plasmon decay Qγ→νν̄ (Ruffert et al. 1996)
and nucleon-nucleon Bremsstrahlung QNN→NNνν̄ (Burrows et al. 2006) and these terms are also
summarized in Sekiguchi (2010). Then QC

ν,intr can be expressed as following.

QC
ν,intr = Qf

e− + Qh
e− + Qf

e+ + Qh
e+

+
∑

ν∈(νe,νµ,ντ )

2(Qe−e+→νν̄ + Qγ→νν̄ + QNN→NNνν̄) (58)

Finally, as for the heating rate, Qµ,H , we incorporate neutrino absorption by free nucleons and
heavy nuclei in this study. Then Qµ,H can be expressed by (Shibata et al. 2011)

Qµ,H = e−βντν

∫
dωκω(−Jωuµ −Hµ

ω) (59)

where ω, the neutrino frequency measured in the comoving frame, is explicitly written. κω is the
opacity contributed from the incorporated charged current reactions for neutrinos with frequency
ω. In Eq.(59), summation over {ν ∈ νe, ν̄e} is not explicitly written. The term e−βτ is to let the
neutrino heating to take place mainly outside the neutrino sphere. Integration by ω corresponds
to the gray approximation and we approximated it as

∫
dωκω(−Jωuµ −Hµ

ω) −→ (εsν )2κ̃(−J uµ −Hµ) (60)

εsν denotes the root-mean squared energy of the streaming neutrinos in MeV unit and κ̃ is the
normalized opacity (see, Sec. 6.2). We do not transfer the number density of neutrinos and also
the energy spectrum is suppressed in this study, we therefore evaluate εsν by following way. We
first project neutrino sphere defined in our cartesian grid to spherical polar grid and it thus can be
expressed by Rν(θ,φ). Then we assume trapped neutrinos freely escape from the neutrino sphere
radially outward as streaming neutrinos with possessing the last scattering information and εsν at
arbitrary point (R, θ,φ) is thus expressed as

εsν (R, θ,φ) ≡ εν(Rν(θ,φ), θ,φ) (61)

where εν in right hand side denotes the trapped neutrino energy.

For reference, we now summarize neutrino-matter interaction source terms appeared in the
hydrodynamics equations (13)-(14). Explicit forms of −Qµγµi and Qµnµ are written by

−Qµγµi = −(Qµ,C − Qµ,H)γµi

= −
∑

ν∈νe,ν̄e,νx

[
(1 − e−βντν )Qν,diff + e−βντνQC

ν,intr

]
ui

+
∑

ν∈νe,ν̄e

e−βντν (εsν )2κ̃ν(−WFνi + P k
νiuk) (62)

Qµnµ = (Qµ,C − Qµ,H)nµ
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6.2. Optical depth

Due to the adoption of the leakage scheme, we have to evaluate the optical depth τ for neutrino
by solving following equation

xiDiτ̃ν

r
= −κ̃ν (46)

where κ̃ν and τ̃ν are neutrino opacity and optical depth for neutrino with 1 MeV energy, respectively.
For neutrino with energy εν [MeV], optical depth τν and opacity κν are evaluated by multiplying
τ̃ν and κ̃ν by ε2

ν , respectively. As for the opacity κ̃ν , we include absorbing reactions; nνe ↔ e−p,
pν̄e ↔ e+n, νeA ↔ e−A′ and scattering processes; νp ↔ νp, νn ↔ νn, νA ↔ νA. Here, ν, in the
scattering processes, represents all species of neutrinos (νe, ν̄e, νx). Subsequently, the total opacity
for 1MeV neutrino, κ̃ν , is expressed by (see, e.g., Ruffert et al. 1996)

κ̃νe = κ̃a(νen) + κ̃a(νeA) + κ̃s(νen) + κ̃s(νep) + κ̃s(νeA) (47)

for νe

κ̃ν̄e = κ̃a(ν̄ep) + κ̃s(ν̄en) + κ̃s(ν̄ep) + κ̃s(ν̄eA) (48)

for ν̄e

κ̃νe = κ̃s(νxn) + κ̃s(νxp) + κ̃s(νxA) (49)

for νx. Here the subindex a and s denote absorption and scattering processes, respectively. Detailed
descriptions for the expressions of each opacity can be found in Bruenn (1985); Burrows et al. (2006).

6.3. Neutrino-matter interaction terms

In this section, we describe neutrino-matter interaction terms appeared in Eqs. (13)-(14) and
Eqs. (20)-(21). The source term Qµ is composed of cooling (Qµ,C) and heating (Qµ,H) parts as

Qµ ≡ Qµ,C − Qµ,H (50)

and additionally Qµ,C can be divided into two parts as Qµ,C
diff and Qµ,C

intr . Each source term is
expressed as followings

Qµ,C
diff =

∑

ν∈νe,ν̄e,νx

[
(1 − e−βντν )Qν,diff

]
uµ (51)

Qµ,C
intr =

∑

ν∈νe,ν̄e,νx

[
e−βντνQC

ν,intr

]
uµ (52)

Qµ,H =
∑

ν∈νe,ν̄e

e−βντνε2
ν κ̃ν(−Jνu

µ −Hµ
ν ) (53)

2.	  GR-‐Radia)on-‐(M)HD	  CODE	  の紹介	  



Closure	  rela)on	  (M1	  closure),	  cf.	  Shibata+,`11	

2.	  GR-‐Radia)on-‐(M)HD	  CODE	  の紹介	  



Tpb=20ms	

1)	  エネルギ−フラックスがr-‐2で落ちているか？	

2.	  GR-‐Radia)on-‐(M)HD	  CODE	  の紹介	  
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condition works well and show quite similar energy profile in high density region where neutrinos
are essentially trapped by matter. On the contrary our results are different from results of IDSA in
the outer region, however, the trapped neutrinos play almost no role in this region and we consider
the difference has no influence on the hydrodynamics.

Next, we show our radiation equations transfer the neutrino momentum appropriately. For
this aim, we assessed our numerical code through two points which are (1) whether the energy
flux of radiation falls with proportional to r−2 above the neutrino sphere and (2) whether the
gain region, in which the net neutrino heating rate becomes positive, is formed similar to previous
studies. As for the first requirement, we show the radial component of energy flux in Fig. 18. From

Fig. 18.— Radial component of energy flux of neutrino radiation Fr,ν in all flavors are plotted by
color coded points (green νe, blue ν̄e and red νx). We also plotted the optical depth by color-coded
solid lines and the horizontal dash-dotted line represents where τ = 2/3. Black solid line shows the
slope with -2 in log scale. Data are obtained from result of our 3DGR (see, Sec. 3) model at 20ms
after core bounce.

this figure, the energy fluxes indeed fall with proportional to r−2 and also no significant effects
of AMR refinement boundary are seen. Furthermore, if we multiply the energy flux above the
neutrino sphere by 4πr2, 4πr2 × (Fr,νe , Fr,ν̄e , Fr,νx) ∼ (9× 1052, 8× 1052, 4× 1052) erg s−1, those are
in good agreement with the luminosity defined by Eq.(39) as plotted in Fig.6.

In Fig.19, we show profiles of the net heating rate and radial velocity along the x axis of
model 3DGR (see, Sec. 3) at different time slices. Because of the dissociation heavy nuclei into



Progenitor:	  Woosley	  &	  Weaver,	  ‘95の15Msun	  
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3.	  15Mにおけるニュートリノ加熱	  



3.	  15Mにおけるニュートリノ加熱	  
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Fig. 7.— Time snapshots of the central region (-200 km≤ x, y, z,≤200 km) in 3DGR model.
Isentropic surfaces are shown with π/2 region in near side is trimmed to see inside. Entropy
contour on x = 0 plane is projected on the corresponding back plane (it is the same for y = 0 and
z = 0 planes.).

3.	  15Mにおけるニュートリノ加熱	  



3.	  15Mにおけるニュートリノ加熱	  
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Fig. 6.— Neutrino luminosities of all neutrino flavors as a function of post bounce time.

imposed in the initial conditions and also the unavoidable numerical perturbations develop during
our calculations. Due to these facts, the shock front propagates gradually outward with breaking
the spherical symmetry which then introduces further convective motions originated mainly from
the negative entropy gradient. In the initial phase of the convection, the negative entropy gradient
is chiefly stemmed from the shock weakening or to the neutrino cooling and not by the neutrino
heating. Then, in the fully grown convective flows, the entropy increases as time advances due to
the neutrino heating since the lateral flow is exposed to the neutrino heating with longer period
compared to the radial one. Such a neutrino heating mechanism together with the convective
motions produce high entropy blobs with s[kB/baryon] ! 10 which rise and expand the shock
front.

In left two panels of Fig. 8, we display time evolution of laterally averaged Brunt-Väisälä
frequency ωBV which is defined by (Buras et al. 2006a)

ωBV ≡ sign(CL)
√

|geffCL| (40)

here geff is the effective gravitational potential and is approximated by geff = dφNT /dr. CL is the
Ledoux criterion defined by

CL ≡ − ∂ρ

∂P

∣∣∣∣
s,Ytot

(
∂P

∂s

∣∣∣∣
ρ,Ytot

ds

dr
+

∂P

∂Ytot

∣∣∣∣
ρ,s

dYtot

dr

)
(41)

In addition, we show laterally averaged anisotropic velocity Vaniso (Takiwaki et al. 2011)

Vaniso =
√

〈ρ[(vr − 〈vr〉)2 + v2
θ + v2

φ]〉/〈ρ〉, (42)

in right two panels. These figures tell us where the convectively unstable region is and where the
convective motions indeed develop. As can be seen in left two panels, the surface of protoneutron
star, ∼ 10-20 km, is convectively unstable because of the strong negative lepton gradient (dYtot/dr <

ニュートリノ光度は	  
①次元をあげると上がる。	  
②SR→GRにしても上がる。	

ニュートリノ光度	



ニュートリノのエネルギーは:	  	  	  	  SR→GRにすると高くなる	  
　　　　　　　　　　　　　     　　　	  	  3D→1Dにすると高くなる	
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4.3. GR effects on the neutrino heating

In the previous section, we reported the hydrodynamical evolutions within the shock surface
and showed the convective motions developed in 3D models which leads to the shock expansion.
In addition to the multidimensional effects, general relativity too affects on the shock propagation
significantly. Even though the stronger gravitational field in GR models acts to pull the shock
surface back to the center, our results show that it sometimes works advantageously compared to the
Newtonian models, though depending on the dimensionality, from the aspect of shock propagation.
We found such differences stem from the efficiency of neutrino heating and we are now explaining
about it. First, in Fig. 11, we plot time evolutions of the root mean squared energy of free
streaming neutrinos 〈εν〉rms (see, Eq.(61) in Sec. 6.3 of Appendix B) averaged over the neutrino
sphere in upper panels and the mean radii of neutrino spheres Rν in lower ones. From these figures,

Fig. 11.— Time evolution of energy of free streaming neutrinos (upper panels) and the radii of
neutrino spheres (lower panels).

we see a trend that the energies of free streaming neutrinos are higher in GR and 1D compared
to SR and 3D, respectively. This reason can be understood from the lower panels in which we
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ではニュートリノ球がより内側に形成される。	  
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Fig. 12.— Mean shock radii as a function of post-bounce time.

explosion (Janka 2001; Murphy & Burrows 2008). Here τres is the residency time scale defined by

τres ≡
{

rgain(θ,φ)−r
vr for vr < 0

rshock(θ,φ)−r
vr for vr > 0

(43)

and represents how long a comoving fluid element in the gain region is expected to be exposed to
the neutrino heating. Here we note both denominator and numerator are measured in the Eulerian
frame. τheat is the heating time scale defined by

τheat ≡
−εbind

Q̇
(44)

where εbind and Q̇ ≡ e6φαQµnµ (see, Eq. 14) are the binding energy and the net heating rate
of a fluid element, respectively. τheat represents how long it takes to get unbounded from the
gravitational field for a fluid element. As for the definition of binding energy εbind, we adopted a
Newtonian treatment expressed by

εbind ≡ ρ

(
utε +

1
2
viv

i + φNT

)
(45)

where φNT < 0 is evaluated by solving Eq.(27). Then the heating efficiency is derived by averaging
each time scale τres and τheat and take their ratio. Here the averaging is performed for all numerical
cells with εbind < 0 and Q̇ > 0. If τres is longer than τheat, a fluid element is From Fig. 13, we
see both of 3D models are efficiently heated compared to 1D models. This is because the radial
flows can be converted to the lateral flows in 3D which lengthen τres. Furthermore, on one hand,

3DGR	

3DSR	

1DGR	
1DSR	

GR効果で重力がきつくなるというデメリットがあるが、	  
その分加熱に重要なニュートリノエネルギーは上昇。	  

結果として3DGRはニュートリノ加熱に有利か？	

3.	  15Mにおけるニュートリノ加熱	  



Janka,	  	  ‘01	
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€ 

τ heat ≡
−ebind

˙ Q 
binding	  energyがニュートリノ加熱	  
により0になるまでの時間	
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Fig. 12.— Mean shock radii as a function of post-bounce time.
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3.	  15Mにおけるニュートリノ加熱	  
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Fig. 13.— The heating efficiency (see text for the definition) as a function of post-bounce time.

1D models show decline of the efficiency curves, those of 3D models maintain constant or even
slightly increasing values, therefore the matter will continue to gain further energy in 3D cases if
we calculate much longer time. Since our numerical runs are limited to only the first 100 ms after
core bounce, we cannot see any evidence of the shock revival (see, Fig. 12). According to the recent
2D-axisymmetric simulation by Marek & Janka (2009), which adopts “ray-by-ray plus” neutrino
transport method in addition to the more sophisticated neutrino-matter interactions compared to
ours, the onset of explosion is ∼ 600 ms after core bounce. Thence we have to calculate several
hundreds ms more to confirm whether the general relativity combined with the three dimensional
effects actually work advantageously to explode a star. However, at least in the initial stage of
post-bounce phase, general relativity works to heat the matter more efficiently than Newtonian
approximation and we consider this order will not change unless some drastic change is triggered
due to GR effect.

ニュートリノ加熱の効率	

1.  GR効果によりニュートリノエネルギーが上昇	  
　　　→τheatが小さくなる	  
2.  3次元の対流効果でτresが延びる	

3.	  15Mにおけるニュートリノ加熱	  



まとめ	

• ニュートリノ輻射入りの3DGRMHDコードの開発	  
• コアバウンス後100msの初期段階において	  
　3DGRはニュートリノ加熱に有利	  
• 理由は3DGRはニュートリノエネルギーが高く、
結果的に加熱の効率が一番良い	  


