重力崩壊に伴う磁場増幅・磁気制動・ 磁気乱流現象について

大塚修一郎(名大•理•物理•TA研) 町田正博(九大),松本倫明(法政大), 佐野孝好(阪大),鈴木建(名大)

- ・原始星形成とその後の星周円盤形成
- ・磁気回転不安定性(MRI)について
- ・ MRIが駆動する乱流
- 乱流が駆動する円盤風

Protostellar Collapse Phase

Machida et al. (2006-2011), Banerjee & Pudritz (2006), Hennebelle & Fromang (2008)

Outflows & Jets are Natural By-Products!

星形成の基本問題

1. 角運動量問題

原始星(Protostar):

 $h_* = \Omega_* R_*^2 \sim (10^{11} \text{cm})^2 / (10^5 \text{s}) \sim 10^{17} \text{ cm}^2 / \text{s}$

分子雲コア: $h_{\text{core}} = \delta v_{\text{core}} R_{\text{core}} \sim 0.1 \text{km/s} \times 10^{17} \text{cm} \sim 10^{21} \text{ cm}^2/\text{s}$ → $h_* \sim 10^{-4} h_{\text{core}}$

2. 磁束問題

原始星(Protostar): $\Phi_* \sim B_* R_*^2 \sim kG \times (10^{11} \text{cm})^2$ 分子雲コア: $\Phi_{\text{core}} \sim B_{\text{core}} R_{\text{core}}^2 \sim 10 \mu G \times (10^{17} \text{cm})^2$ → $\Phi_* \sim 10^{-4} \Phi_{\text{core}}$

第1収縮期(First Coreの形成)

計算結果

Masunaga, Miyama, & SI 1998, ApJ 495, p.346

RHD:Temperature Evolution at Center

第2収縮の始まり

Masunaga, Miyama, & SI 1998, ApJ 495, p.346

Masunaga & SI 2000, ApJ **531**, p.350

First Core形成の役割

その寿命は10³yr 程度しかないが,...

1. 円盤状構造の形成 → 重力的分裂と連星系形成へ 2. MHD outflow の駆動 → 角運動量の放出(その結果10⁻⁴に)

First Coreの観測的発見

- Chen et al. (2010) ApJ 715, 1344
- Pineda et al. (2011) ApJ 743, 201

では、第2収縮以後の3D計算は?

History of Ionization Degree

Because of uncertainty of dust grain properties, we have parameterized resistivity.

Machida, SI, & Matsumoto (2007) ApJ **670**, 1198

Changing resistivity results in different morphology of outflows.

非理想MHDの効果

Reynolds Number

8

6

4

2

0

-2

20

16

18

Temperature

Second

Core

第一段階: Outflow driven from the first core The evolution of the Outflow around the first core Model for > This animation start after the first core is formed at $n \sim 10^{10}$ cm⁻³ $(\alpha, \omega)=1, 0.3$ Grid level L = 12 (Side on view) Grid level L = 12 (Top on view) - 0 × £ ⊢ Adiabatic Phase sothermal Phase Second Collapse & Log 10 10 **Outflow Driving Phase** 10² 10 **Gas Temperature** Log n (cm-3) 105 10¹⁰ 1015 1020 Spacial Scale (AU) 104 100 0.1 360 A

第2段階: Jet driven from the protostar

Magnetocentrifugally driven Wind

Wide Opening Angle

outflow around first core $B_{\rm r} \approx B_{\rm z} \approx B_{\phi}$

Magnetic Pressure driven Wind

Narrow Opening Angle

jet around protostar $B_z \ll B_\phi$

Good Collimation! 愚直な計算の賜物

星形成過程は惑星形成の舞台を決める!

Formation of Planetary Mass Companions in Protoplanetary Disk

Machida, SI, Matsumoto (2009)

Resistive MHD Calc. 分子雲コアから惑星へ

60 AU

SI, Machida, & Matsumoto (2010) ApJ 718, L58

Formation & Evolution of Discs

Further Evolution of Protostars

Accretion of Gas from the envelope &
 Gas Accretion through the Discs

Early Phase

Rapid Gas Accretion due to Gravitational Torque of

"m=2" Spiral Mode

Later Phase

Slow Accretion due to Magnetorotational Instability Velikhov 1959, Chandrasekhar 1961, Balbus & Hawley 1991

Global Disk Simulation

Balbus & Hawley (1998) Rev. Mod. Phys. 70, 1

磁気回転不安定性の特徴

理想 MHD では *m*=0(軸対称), *k*_x=0のモード $R_{\rm m} \equiv v_{\rm A} \left(v_{\rm A} / \Omega \right) / \eta$ 線形成長率: Ideal MHD 0.8 成長率 $R_{\rm m} = 10$ $\omega_{\text{max}} \approx (3/4) \ \Omega_{\text{kepler}}$ 0.6 微弱な磁場から指数 [℧/Ծ] ш 関数的に成長 Kinematic Dynamolt 0.2駄目 0 $\lambda_{\rm max} \approx v_{\rm a}/\Omega$ 0.51.5Ω 2 ➔inverse cascade $k_z v_{Az} / \Omega$ 波数 Sano & Miyama (1999) ApJ 515, 776 →計算家には幸運

Basic Eq. $\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \, \overrightarrow{v} \right) = 0$ $\frac{d\overrightarrow{v}}{dt} + \frac{1}{\rho}\nabla\left(P + \frac{B^2}{8\pi}\right) - \frac{1}{4\pi\rho}\left(\overrightarrow{B}\cdot\nabla\right)\overrightarrow{B} + \nabla\Phi = 0$ $\frac{\partial \overrightarrow{B}}{\partial t} - \nabla \times \left(\overrightarrow{v} \times \overrightarrow{B} \right) = \eta \nabla^2 \overrightarrow{B}$ $\rho T \frac{ds}{dt} = \frac{\eta}{4\pi} \left(\nabla \times \overrightarrow{B} \right)^2$ No Cooling!

where,

- d/dt: Lagrangian Derivative
 - Φ : Gravitational Potential
 - η : Magnetic Diffusivity
 - s: Enthoropy per Unit Mass

Parameters

The System is Characterized by Two Parameters

1. Plasma β : Strength of the Uniform Vertical Fields

$$\beta_{\rm init} = \frac{P_0}{B_0^2/8\pi}$$

2. Magnetic Reynolds Number: The Efficiency of Magnetic

Dissipation

$$R_{\mathrm{m,init}} = rac{VL}{\eta} = rac{v_{\mathrm{A0}}(v_{\mathrm{A0}}/\Omega)}{\eta}$$

Lundquist

Number

 $v_{A0} = B_0 / \sqrt{4 \pi \rho_0}$: Alfvén velocity v_{A0} / Ω : Most unstable wavelength of MRI

MHD Simulations including Ohmic Dissipation

A Keplerian Disk + Uniform Vertical Fields B₀

<u>磁気レイノルズ数 R_m が小さい場合</u> ほぼ一様に見えるような乱流状態

Sano, SI & Miyama (1998) ApJ 506, L57

$$\beta_0 = 3200, R_{\rm m} = 0.5$$

軸対称2D計算

<u>磁気レイノルズ数 R_mが大きい場合</u>

線形不安定の固有関数がほぼそのまま振幅を 限りなく増大する.(Channel Flowの成長)

2D Axisymmetric Calculation

simple growth of the most

 $\underline{R}_{M} > 1$

磁気レイノルズ数 *R_m*が大きい場合

2Dでは壊れなかった Channel Flowが非軸 対称モードで壊される.

Ζ

飽和する!

非線形状態

Re_M > 1 スパイク状のエネルギー進化 「指数関数的成長⇒磁気リコネクション」の繰り返し

Fluctuation vs Dissipation

$$\Gamma \equiv \iiint \left[\rho \left(\frac{1}{2} v^2 + u + \psi \right) + \frac{B^2}{8\pi} \right] dV$$
Hawley et al. 1995
$$\frac{d\Gamma}{dt} \equiv \iint \left[\rho \vec{v} \left(\frac{1}{2} v^2 + u + \frac{P}{\rho} + \psi \right) + \vec{S} \right] \cdot \vec{dA} = \frac{3}{2} \Omega L_x \iint_{y \in \mathbb{R}} \left(\rho v_x \delta v_y - \frac{B_x B_y}{4\pi} \right) dA$$
Poynting Flux
$$\vec{M} \propto W_{R\phi} \equiv \rho v_R \delta v_\phi - \frac{B_R B_\phi}{4\pi} \propto \frac{d\Gamma}{dt} .$$
If saturated, $\left\langle \left\langle \frac{\partial v^2}{\partial t} \right\rangle \right\rangle = \left\langle \left\langle \frac{\partial B^2}{\partial t} \right\rangle \right\rangle = 0$, then, $\left\langle \frac{d\Gamma}{dt} \right\rangle = \left\langle \left\langle \frac{\partial \rho u}{\partial t} \right\rangle \right\rangle = \frac{3\Omega}{2} \left\langle \left\langle \rho v_R \delta v_\phi - \frac{B_R B_\phi}{4\pi} \right\rangle \right\rangle ,$
where $\langle \rangle$ denotes time-average, and $\langle \langle \rangle \rangle$ denotes time- and spatial- average.
Note that $\langle v_R \rangle = \langle \delta v_\phi \rangle = \langle B_R \rangle = \langle B_\phi \rangle = 0$.
Sano & SI, ApJ 561, L179, 2001

Saturation Value of $\langle \langle B^2 \rangle \rangle \Rightarrow$ Dissipation Rate $\approx 0.03\Omega \langle \langle B^2 \rangle \rangle$

SI & Sano (2005) ApJL 628, L155

飽和状態の性質

CHARACTERISTIC RATIOS IN MRI TURBULENCE

Quantity	Average
$\langle \langle -B_x B_y / 4\pi \rangle \rangle / \langle \langle B^2 / 8\pi \rangle \rangle$	0.467 ± 0.040
$\langle \langle -B_x B_y / 4\pi \rangle \rangle / \langle \langle \rho v_x \delta v_y \rangle \rangle$	5.19 ± 0.67
$\langle \langle B_x^2 \rangle \rangle / \langle \langle B_z^2 \rangle \rangle$	3.35 ± 0.28
$\langle \langle B_{\nu}^{2} \rangle \rangle / \langle \langle B_{z}^{2} \rangle \rangle$	23.7 ± 4.0
$\langle \langle v_x^2 \rangle \rangle / \langle \langle v_z^2 \rangle \rangle$	2.62 ± 0.48
$\langle \langle \delta v_{v}^{2} \rangle \rangle / \langle \langle v_{z}^{2} \rangle \rangle$	2.15 ± 0.34
$\langle \langle \delta E_{\rm kin} \rangle \rangle / \langle \langle E_{\rm mag} \rangle \rangle$	0.326 ± 0.036

Sano, SI, Turner, & Stone (2004) ApJ 605, 321

 $B_x B_y / 4\pi > \rho v_x \delta v_y$ Reynolds Maxwell Stress Stress

ガス圧の 時間進化

する.

10000 1000 <T_M>/(B_0^2/8 pi) 100 10 Maxwell Stress ($\propto B_r$ B_v)の時間変化 0.1 beta 0 = 0.01 0.01 準定常的な 10^2 0.001 10^4 10^6 エネルギー 0.0001 5 15 10 20 25 0 の注入に伴 1e+06 い, ガス圧 <P_gas>/(B_0^2/8 pi) 10000 は単調増加 100 ガス圧の時間進化 $beta_0 = 0.01$ 1 10^2 0.01 10^6 5 10 15 20 25 0 $t / t_{\rm rot}$ 時間

Discussion 1: Saturation Level?

$$\langle\!\langle \rho \mathbf{v}_{\mathbf{x}} \delta \mathbf{v}_{\mathbf{y}} - B_{\mathbf{x}} B_{\mathbf{y}} / 4\pi \rangle\!\rangle \equiv \langle\!\langle W_{r\phi} \rangle\!\rangle_{\text{sat}} (\eta, B_{z,\text{init}}, P, L_z, \dots) \propto \langle\!\langle B^2 \rangle\!\rangle$$

In the case with Net B_z

- Re_m < 1...Strong Dependence on Resistivity ≈ 2D evolution Sano, SI, & Miyama, ApJ 506, L57, 1998
- Re_m > 1... recurrence of Channel Flow & Reconnection Sano, SI, Turner & Stone (2004) $\langle W_{r\phi} \rangle_{sat} = V_{Az,init} \rho L_z \Omega (P_{gas}/P_c)^{1/6} \dots Why?$

Discussion 2: Saturation Level?

Lesur & Longaretti (2007), $Re_m > 1$ Using Spectral Method for Incompressible Fluid

$$\langle\!\langle B^2 \rangle\!\rangle_{sat} \propto (Pr)^{\delta}, \delta = 0.25 - 0.5$$

where Magnetic Prandtl number is $\Pr \equiv v_{viscosity} / \eta_{resistivity}$

→ Importance of Turbulent Reconnection?

Lazarian & Vishniac (1999)

- v, viscosity ↑ → Size of Smallest Eddy ↑
- \rightarrow Turbulent Reconnection Rate \downarrow
- → Saturation Level ↑

乱流の階層構造は重要?

Global Disk Simulation

強力な円盤風の駆動

Powerful MHD Wind from Disk just like Solar Wind Suzuki & SI (2009) ApJ **691**, L49

円盤風のz軸方向プロファイル

Suzuki & SI (2009) ApJ 691, L49

星形成の基本問題

1. 角運動量問題

分子雲コア:

原始星(Protostar):

 $h_* = \Omega_* R_*^2 \sim (10^{11} \text{cm})^2 / (10^5 \text{s}) \sim 10^{17} \text{ cm}^2 / \text{s}$

2. 磁束問題

原始星(Protostar): $\Phi_* \sim B_* R_*^2 \sim kG \times (10^{11} cm)^2$ 分子雲コア: $\Phi_{core} \sim B_{core} R_{core}^2 \sim 10 \mu G \times (10^{17} cm)^2$ → $\Phi_* \sim 10^{-4} \Phi_{core}$

磁束は外側に移動?

質量は主に内側に落下し、円盤を貫く磁束のほと んどは外側に移動するべきだが...

半径 r

まとめ

縦磁場入りの差動回転ガス系(磁気レイノルズ数 Re>1)で ●微弱な磁場は必ず(指数関数的に)成長する ○成長率は磁場の強さに依らず、回転周期のオーダー → Kinematic Dynamo理論は不適切 ○磁場が強くなると最大成長波長は長くなる → エネルギーの inverse cascade ●磁場の成長は飽和する

Re_m < 1...準定常的乱流

Re_m > 1... recurrence of Channel Flow & Reconnection Oエネルギー等分配状態にはならない

〇飽和状態での実効的トルク(\propto ($B_x B_y$))の圧力依存性? 〇質量降着率と3D磁気リコネクションによる熱化の釣合

⇒ 降着円盤の揺動・散逸関係 Sano & SI, ApJ 561, L179, 2001

まとめ

OMHD渦のスケールと系のスケールが同程度になると 間欠的なMHD乱流になる(省略)

○円盤面内の磁気乱流→円盤風の加速
 ガス円盤の表面は太陽の表面と類似的
 →円盤ガス成分の動的散逸(蒸発)をもたらす
 →惑星形成過程にとって本質的

課題:

○円盤面を貫く縦磁場は外側に移動するはず → 更なる解析の必要性

〇乱流の飽和値を導出する理論の構築