京都大学基礎物理学研究所研究会「超新星爆発と数値シミュレーション」

GRB jetの長時間進化 と放射機構への示唆

(Suzuki & Shigeyama, Submitted to ApJ)

東京大学RESCEU 茂山研D3 鈴木昭宏

2011年12月28日 @京都大学基礎物理学研究所

Outline

- Introduction
- Simulation
- Photospheric emission
- Conclusion

Outline

- ~ Introduction
- Simulation
- Photospheric emission
- Conclusion

Gamma-ray burst

- 突如、ある方向から大量のガンマ線が飛
 来する現象
- スペクトルは"Band function" (Band etgraphic for al. 1993)でfitできる

 $\begin{array}{l} \displaystyle \frac{\text{Band function}}{F_{\nu} \propto \ \nu^{\alpha} \ (h \ \nu < E_{p} \)} \\ \displaystyle F_{\nu} \propto \ \nu^{\beta} \ (h \ \nu > E_{p} \) \end{array}$

◆ durationによって分類(long/short)

 $T_{90} < 2sec : short$ $T_{90} > 2sec : long$

Gamma-ray burst

- 突如、ある方向から大量のガンマ線が飛
 来する現象
- スペクトルは"Band function" (Band et al. 1993)でfitできる

 $\begin{array}{l} \displaystyle \frac{\text{Band function}}{F_{\nu} \propto \nu^{\alpha} \ (h \ \nu < E_{p} \)} \\ \displaystyle F_{\nu} \propto \nu^{\beta} \ (h \ \nu > E_{p} \) \end{array}$

◆ durationによって分類(long/short)

 $T_{90} < 2sec$: short $T_{90} > 2sec$: long

long Gamma-ray burst

- SNとのassociation(1998bwなど)
- 大質量星の重力崩壊
- Γ>100の超相対論的ジェット
- ◆ 放射機構の詳細は未だよく分かってい ない

Stanek+ (2005)

long Gamma-ray burst

- ► SNとのassociation(1998bwなど)
- ~ 大質量星の重力崩壊

Stanek+ (2005)

Fermi observations

- high-energy emission(<100MeV)の遅れ
- low/high-energy componentは放射領域が異なる?
- photospheric emissionの可能性

Abdo+ (2009)

Fermi observations

- ◆ high-energy emission(>100MeV)の遅れ
- ✓ low/high-energy componentは放射領域が異なる?
- ◆ photospheric emissionの可能性

Fermi observations

- ◆ high-energy emission(>100MeV)の遅れ
- ✓ low/high-energy componentは放射領域が異なる?
- ◆ photospheric emissionの可能性

GRB 090902B

Ryde+ (2010)

Hydrodynamical simulation相対論的流体力学の発展とともに、重力崩

壊する星を貫くジェットのシミュレーショ

ンは精力的に行われてきた

Morsony+ (2007)

Hydrodynamical simulation

Mizuta+ (2011)

Nagakura+ (2011)

Jetの長時間発展(~10⁵-10⁶sec)

~ 相対論的な速度で運動する物体からの放射の継続時間

→ 観測者系での継続時間 τ_{obs} はfixed frameでの継続時間 τ_{ol}/Γ^2 倍

◆ Afterglowへの接続あるいは超新星として光る段階ではどうなるのか?

◆ 相対論的な速度で運動する物体からの放射の継続時間

→ 観測者系での継続時間 τ obsはfixed frameでの継続時間 τ の1/ Γ ²倍

Afterglowへの接続あるいは超新星として光る段階ではどうなるのか?

Outline

- Introduction
- ✓ Simulation
- Photospheric emission
- Conclusion

GRB jet simulation

- 適当なprogenitor modelを用いて、
 GRB jetのsimulationを行う
- ~ 2D特殊相対論的流体力学コード

$$\begin{split} D = \rho \Gamma \\ S_r = \rho h \Gamma^2 v_r &= \left(\rho + \frac{\gamma}{\gamma - 1}p\right) \Gamma^2 v_r \\ S_\theta = \rho h \Gamma^2 v_\theta &= \left(\rho + \frac{\gamma}{\gamma - 1}p\right) \Gamma^2 v_\theta \\ T = \rho h \Gamma^2 - p \\ \Gamma = \frac{1}{\sqrt{1 - v_r^2 - v_\theta^2}} \end{split}$$

$$\begin{aligned} \frac{\partial D}{\partial t} &+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} (r^2 \sin \theta D v_r) + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} (r^2 \sin \theta D v_\theta) = 0 \\ \frac{\partial S_r}{\partial t} &+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} [r^2 \sin \theta (S_r v_r + p)] + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} (r^2 \sin \theta S_\theta v_\theta) = -\frac{S_\theta v_\theta + 2p}{r} \\ \frac{\partial S_\theta}{\partial t} &+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} (r^2 \sin \theta S_r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (S_\theta v_\theta + p) = -\frac{v_r \sin \theta + v_\theta \cos \theta}{r \sin \theta} S_\theta \\ \frac{\partial T}{\partial t} &+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} S_r + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} S_\theta = 0 \end{aligned}$$

Mapping procedure

×2

Х

◆ 長時間発展(t~10⁸⁻⁹ sec)を追いたい

→ jetのスケール~ 10^{18-19} cm \rightleftharpoons Fe coreのスケール~ 10^{8-9} cm

- Courant条件からtime stepΔtは、
 - zoneの最小sizeで決まる

Ζ

← 時間が経つ毎に、zoneのsizeを大き くしていく

GRB jet simulation

✓ EOS: ideal gas

(adiabatic index=4/3)

- radial: mapping procedure
 angle: $0^{\circ} < \theta < 90^{\circ}$
- √ (256×64) zones

$$\frac{\partial D}{\partial t} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} (r^2 \sin \theta D v_r) + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} (r^2 \sin \theta D v_\theta) = 0$$

$$\frac{\partial S_r}{\partial t} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} [r^2 \sin \theta (S_r v_r + p)] + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} (r^2 \sin \theta S_\theta v_\theta) = -\frac{S_\theta v_\theta + 2p}{r}$$

$$\frac{\partial S_\theta}{\partial t} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} (r^2 \sin \theta S_r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (S_\theta v_\theta + p) = -\frac{v_r \sin \theta + v_\theta \cos \theta}{r \sin \theta} S_\theta$$

$$\frac{\partial T}{\partial t} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial r} S_r + \frac{1}{r^3 \sin \theta} \frac{\partial}{\partial \theta} S_\theta = 0$$

Progenitor model

- ► Woosley&Heger(2006) 16TIモデル
- ∼ WR star
- ✓ final mass~14M

~ 半径~4×10¹⁰cm

Progenitor model

- ◆ 星の外には、steady wind+uniform ISM
- \sim v_w=1000 km/sec
- ~ 濃いCSM:dM/dt=10⁻² M●/yr

► 薄いCSM:dM/dt=10⁻⁷ M●/yr

$$\rho_{\text{ext}} = \rho_{\text{w}}(r) + \rho_{\text{ISM}}$$
$$\rho_{\text{w}} = \frac{\dot{M}}{4\pi r^2 v_{\text{w}}}$$
$$\rho_{\text{ISM}} = 100m_{\text{u}} \text{ g cm}^{-3}$$

Jet injection

Zhang+ (2003)

- ∼ inner radius: $R_{in}=3\times10^8 cm$
- → half opening angle: $θ_j = 10^\circ$
- \sim total energy: E =3×10⁵² erg
- \sim energy deposition rate: E=10⁵¹ erg/s
- ∼ jet Lorentz factor: $Γ_j = 5$
- ∼ specific internal energy: $\varepsilon_0/c^2=20$

Ejecta Dhomologous expansion

✓ jet軸に沿ったdensity/Lorentz

factor profiles

- Lorentz factorの増加は160程
 度でとまる
- ✓ homologousな進化
- 時間とともにsupernova成分とは分離する
- \sim E_{kin} ~10⁵²erg

Ejecta homologous expansion

- shellの密度分布のpeakの位置・
 Lorentz factor・温度の時間変化
- ◆ homologousな進化
- $\sim \rho \propto t^{-3}$
- ∼ P/ ρ^{γ} =Const. ⇒ P ∝ t⁻⁴
- ~ 温度はP=aT⁴/3から見積もる
 と、T ∝ t⁻¹

Homologousかつ adiabaticに進化

$$\rho_{\text{ext}} = \rho_{\text{w}}(r) + \rho_{\text{ISM}}$$
$$\rho_{\text{w}} = \frac{\dot{M}}{4\pi r^2 v_{\text{w}}}$$
$$\rho_{\text{ISM}} = 100m_{\text{u}} \text{ g cm}^{-3}$$

- ▲ dM/dt=10⁻⁷ M_☉/yrと10⁻² M_☉/yr
 との比較(jet軸に沿った圧力分布)
- 濃いCSMを置いた場合は、CSM中 を伝搬するforward shockの pressureが卓越する

$$p_{\rm s} = \frac{2\rho_1 \Gamma_{\rm s}^2}{3}$$

Reverse shockの形成

- ◆ さらに時間が経つと、Forward shockが減速し始める
- ▶ Reverse shockの形成
- ⇒ dM/dt=10⁻² M●/yrの場合の、
 jet軸に沿ったLorentz factor/
 density/pressure profiles

Outline

- Introduction
- Simulation
- Photospheric emission
- Conclusion

Ejecta homologous expansion

Optical depth

shellのEffective optical depth

$$\tau_* = \sqrt{\tau_{\rm a}(\tau_{\rm a} + \tau_{\rm s})}$$

$$\tau_{\rm s} = \kappa_{\rm s} \rho L, \quad \tau_{\rm a} = \alpha_{\nu} L$$

*co-moving frameで見積もる

Optical depth

- ✓ shellのEffective optical depth
- ▲ homologous expansionの開始: t=t₀~100 [s]

$$\rho = \rho_0 \left(\frac{t}{t_0}\right)^{-3} \quad T = T_0 \left(\frac{t}{t_0}\right)^{-1} \quad L = L_0 \left(\frac{t}{t_0}\right)^1$$

$$\rho_0 \sim 10^{-7} \text{ [g cm}^{-3]} \quad T_0 \sim 10^7 \text{[K]} \quad L_0 \lesssim 10^{12} \text{[cm]} \quad \Gamma \sim 160$$

$$\blacktriangleright \tau_* = \sqrt{\tau_a(\tau_a + \tau_s)} \sim 10^3 \gg 1 \quad \text{@t=t_0-100 s}$$

$$t \sim a \text{ few} \times 10^3 \text{ sec} \circlearrowright \tau_* \sim 1$$

ただし、 t_0 , ρ_0 , T_0 , tprogenitor model, injection conditionに依存 そこで、黒体放射を続ける時間には幅を持たせて考える

*T**=1となる時刻 t1=500, 10⁴ sec

 観測者は、T=10⁷Kから10⁵Kくら

 wまでの黒体放射の重ね合わせを

 観ることになる

$$F(\epsilon) \propto \int_{t_0}^{t_1} \frac{R_{\rm ph}^2 \epsilon^2}{\exp(\epsilon/\Gamma kT) - 1} dt,$$

~ 赤: t₁=10⁴ s 青: t₁=500 s

$$F(\epsilon) \propto \int_{t_0}^{t_1} \frac{R_{\rm ph}^2 \epsilon^2}{\exp(\epsilon/\Gamma kT) - 1} dt,$$

- ◆ Band functionの低エネルギー側のベキとよく合う
- Planck spectrumがよく合うものは、ejectaがすぐに晴れ上がるモデルに対応?

^{ohoton} spectrum [a.u.]

- ◆ band functionの低エネルギー側のベキとよく合う
- Planck spectrumがよく合うものは、ejectaがすぐに晴れ上がるモデルに対応?

Outline

- Introduction
- Simulation
- Photospheric emission
- ➤ Conclusion

GRB jetの長時間進化

- mappingを用いたsimulationに
 よって、GRB jetの長時間進化を
 追う
- ◆ optically thick shellの形成とそのhomologousな膨張
- ✓ Reverse shockの形成
- shellからのphotospheric
 emission

$$\rho = \rho_0 \left(\frac{t}{t_0}\right)^{-3} \quad T = T_0 \left(\frac{t}{t_0}\right)^{-1} \quad L = L_0 \left(\frac{t}{t_0}\right)$$

GRB jetの長時間進化

- ◆ optically thick shellの形成と進化
- ◆ shellからのphotospheric emission
- 👡 low-energy component に対するモデル

Gamma-ray burst

< 突如、ある方向から大量のガンマ線が

飛来する現象

- ◆ durationによって分類
- → スペクトルは"Band function" (Band

et al. 1993)でfitできる

T₉₀: burst のエネルギーの90%が detectされるまでの時間

> $T_{90} < 2sec : short$ $T_{90} > 2sec : long$

FIG. 1.—(a) Distribution of T_{90} for the 222 GRBs of the first BATSE catalog. raw data; dotted lines are the error-convolved histograms as explained in the text.

▶ spectrumはエネルギーの-1乗にな

ろ

10⁹

10⁸

10⁷

10⁶

10⁵

10⁴

 10^{-2}

photon flux [a.u.]

異なるframeでのmean free path

Laboratory time vs Observer time

$$t_{\rm obs} = \frac{c(t-t_0) - \int_{t_0}^t c\sqrt{1 - \frac{1}{\Gamma^2}} dt}{c} = \int_{t_0}^t \left(1 - \sqrt{1 - \frac{1}{\Gamma^2}}\right) dt.$$

