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Gamma-ray burst
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スペクトルは”Band function”  (Band et 
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long Gamma-ray burst

Stanek+ (2005)

SNとのassociation(1998bwなど) 

大質量星の重力崩壊

Γ>100の超相対論的ジェット

放射機構の詳細は未だよく分かってい

ない
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Fermi observations

Abdo+ (2009)
GRB 080916C

high-energy emission(<100MeV)の遅れ

low/high-energy componentは放射領域が異なる？

photospheric emissionの可能性
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Fermi observations

Ryde+ (2010)
GRB 090902B

high-energy emission(>100MeV)の遅れ

low/high-energy componentは放射領域が異なる？

photospheric emissionの可能性



Hydrodynamical simulation
相対論的流体力学の発展とともに、重力崩

壊する星を貫くジェットのシミュレーショ

ンは精力的に行われてきた

Zhang+ (2003) Morsony+ (2007)



Mizuta+ (2011)

Hydrodynamical simulation
Nagakura+ (2011)



Jetの長時間発展(~105-106sec)
相対論的な速度で運動する物体からの放射の継続時間

➡ 観測者系での継続時間τobsはfixed frameでの継続時間τの1/Γ2倍

Afterglowへの接続あるいは超新星として光る段階ではどうなるのか？

cτ

cτobs
τobs~100 sec
  →τ~106 (Γ/100)2 sec



Jetの長時間発展(~108-109sec)
相対論的な速度で運動する物体からの放射の継続時間

➡ 観測者系での継続時間τobsはfixed frameでの継続時間τの1/Γ2倍

Afterglowへの接続あるいは超新星として光る段階ではどうなるのか？
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GRB jet simulation
適当なprogenitor modelを用いて、

GRB  jetのsimulationを行う

2D特殊相対論的流体力学コード流体方程式の数値積分
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Mapping procedure
長時間発展(t~108-9 sec)を追いたい

Courant条件からtime stepΔtは、

zoneの最小sizeで決まる

時間が経つ毎に、zoneのsizeを大き

くしていく

x

z

x

z

×2 ×2

➡ jetのスケール~1018-19 cm ⇄ Fe coreのスケール ~  108-9 cm



GRB jet simulation
EOS: ideal gas                    

(adiabatic index=4/3)

radial: mapping procedure   　

angle:  0°<θ<90°

(256×64) zones
x

z

流体方程式の数値積分
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Progenitor model
Woosley&Heger(2006)  16TIモデル

WR star

final mass~14M◉  

半径 ~ 4×1010cm



Progenitor model
星の外には、steady wind+uniform ISM

vw=1000 km/sec

濃いCSM : dM/dt=10-2 M◉/yr

薄いCSM : dM/dt=10-7 M◉/yr
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Figure 3.9: The radial profile of the density
of the progenitor star used in this work. The
mass-losss rate of 10�7

M� yr�1 is adopted.

Figure 3.10: The radial profile of the mass
fractions of some nuclei of the progenitor star
used in this work.

evolves as ps / ⇢1. Thus, in the case of uniform ambient media, the post-shock pressure does not

evolve with time, while it is inversely proportional to the square of the time in the wind case.

3.4 Hydrodynamical simulation of the jet

In this section, I describe numerical techniques to calculate the long-term evolution of a jet

injected into the core of a massive star. I have developed a code to solve the two-dimensional

relativistic hydrodynamical equations in the spherical coordinates (r, ✓). The details of the code

are summarized in Appendix D. The simulations assume the axial and equatorial symmetry.

3.4.1 Progenitor model

I use one of the pre-supernova stellar models provided by Ref. [87] as the progenitor model. The

name of the model is 16TI, which is used in some previous works on GRB jets (e.g., Refs.[91, 52,

50]). The mass and the radius of the star are 14 M� and ⇠ 4⇥ 1010 cm. I attach a steady wind

with a constant mass-loss rate Ṁ and a velocity vw outside the star, Eq. (3.11). In this work,

the wind velocity is fixed to be 1000 km s�1. In the fiducial model, the mass-loss rate is set to

be 10�7
M� yr�1. When this value is adopted, the wind hardly a↵ects the propagation of the

ejecta. I carry out another set of calculations with Ṁ = 10�2
M� yr�1 and 10�3

M� yr�1 to

clarify e↵ects of the presence of the dense CSM on the evolution of the ejecta. For the interstellar

medium (ISM), I assume a uniform medium with the number density of 100 cm�3. Thus, the

density ⇢ext of the ambient medium is given by the following function of the radius,

⇢ext = ⇢w(r) + ⇢ISM, (3.14)
3.4. HYDRODYNAMICAL SIMULATION OF THE JET 49

Here, the mass density of the ISM is ⇢ISM = 100mu g cm�3, where mu = 1.66 ⇥ 10�24 g is

the atomic mass unit. The profiles of the density and the mass fractions of some nuclei of the

progenitor model are shown in Figures 3.9 and 3.10.

3.4.2 Jet injection

The injection of the jet is realized in the same manner as Ref. [91]. I impose a boundary condition

on the physical variables at the inner boundary. The radius of the inner boundary is set to be

Rin = 3 ⇥ 108 cm. The values at the boundary are determined by specifying the following free

parameters, the energy deposition rate Ė, the jet opening angle ✓j, the initial Lorentz factor �j,

the specific internal energy ✏0 normalized by c

2 (hereafter, I adopt the normalization c = 1 for

simplicity), and the duration of the jet injection ⌧j. The boundary condition to generate a jet is

imposed in the directions with ✓ < ✓j and for 0 < t < ⌧j. In this work, the jet opening angle is

fixed to be ✓j = 10�. I only consider the energy deposition at a constant rate. Thus, the total

injected energy yields Etot = Ė⌧j. The radial component of the velocity at the inner boundary is

given by,

vj =

s
1�

1

�2
j

, (3.15)

and the other components are set to be zero. Using the jet opening angle ✓j and the radius of

the inner boundary Rin, the area Sj through which the jet is injected can be expressed as,

Sj = 2⇡R2
j (1� cos ✓j). (3.16)

Thus, the energy flux is given by

Ė

Sj
=

Ė

2⇡R2
j (1� cos ✓j)

. (3.17)

Equating this expression with the energy flux along the radial direction given in Equation (A.51),

(⇢h�2
j �D)vj, I obtain the density ⇢0 at the inner boundary,

⇢0 =
Ė

2⇡R2
in(1� cos ✓j)

1

vj[(1 + �✏0)�2
j � �j]

, (3.18)

where I have used the equation of state for an ideal gas with the adiabatic index of �(= 4/3).

The expression of the pressure p0 at the inner boundary is easily derived,

p0 = (� � 1)⇢0✏0. (3.19)

Thus, the free parameters, Ė, ✓j, �j, ✏0, and ⌧j are crucial for the evolution of the jet.

Especially, from the relativistic Bernoulli’s principle, the maximum Lorentz factor of the jet can
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forward shock is expressed as

Eext =
4⇡

3
r

3
decn0c

2�2
. (3.8)

On the other hand, the injected energy Ein can be expressed in terms of the mass of the shell by

Ein = �Mshellc
2
. (3.9)

Equating these two expressions, the following relation is obtained,

4⇡

3
r

3
decn0� ⌘ Msw� = Mshell, (3.10)

where Msw denotes the mass of the matter swept by the forward shock. This relation means that

the deceleration begins at which the swept mass is comparable with the mass of the shell divided

by the Lorentz factor. Solving this equation with respect to the radius rdec, it is found that the

deceleration radius is inversely proportional to the cubic root of the density n0, rdec / n

�1/3
0 . In

the case of the steady wind with the mass-loss rate Ṁ and the velocity vw, in which the density

⇢w of the ambient medium is inversely proportional to the square of the radius,

⇢w =
Ṁ

4⇡r2vw
, (3.11)

the mass of the matter swept by the forward shock should be evaluated in the following way,

Msw =

Z
rdec

0
⇢w4⇡r

2
dr =

Ṁ

vw
rdec, (3.12)

The deceleration radius is inversely proportional to the mass-loss rate, rdec / Ṁ

�1.

The interaction between the ejecta moving at relativistic speeds and the CSM is investigated

under the assumption of spherical symmetry by Ref [12] for the first time. They derived a series

of self-similar solution of the flow. From their result, the time dependence of some physical

quantities, e.g., the density and the pressure, of the shocked medium must be di↵erent from that

in the homologous expansion phase described in the previous section. In the following discussion,

the strong shock approximation, in which the pressure of the CSM is negligible, is assumed.

Under the approximation, the post-shock pressure ps is written in terms of the pre-shock density

⇢1 and the shock Lorentz factor �s as

ps =
2⇢1�2

s

3
. (3.13)

The time evolution of the pressure ps is characterized by those of the pre-shock density and the

shock Lorentz factor. Especially, at the very beginning of the ejecta-CSM interaction in which

the kinetic energy of the ejecta is still larger than that of the matter swept by the forward shock,

the shock Lorentz factor is expected to be nearly constant. In this phase, the post-shock pressure



Jet injection
inner radius:                 Rin=3×108cm

half opening angle:       θj =10°

total energy:                 E =3×1052 erg

energy deposition rate:  E=1051 erg/s

jet Lorentz factor:         Γj = 5

specific internal energy: ε0/c2=20

x

z
.

– 5 –

the velocity at the inner boundary is given by,

vj =

√
1− 1

Γ2
j

, (2)

and the other components are set to be zero. Using the jet opening angle θj and the radius
of the stellar core Rin, the area Sj through which the jet is injected can be expressed as,

Sj = 2πR2
j (1− cos θj). (3)

Thus, the energy flux is given by

Ė

Sj
=

Ė

2πR2
j (1− cos θj)

. (4)

Equating this expression with the energy flux along the radial direction given in Equation
(A10), (ρhΓ2

j −D)vj, we obtain the density ρ0 at the inner boundary,

ρ0 =
Ė

2πR2
in(1− cos θj)

1

vj[(1 + γε0)Γ2
j − Γj]

, (5)

where we have used the equation of state for an ideal gas with the adiabatic index of γ(= 4/3).
The expression of the pressure p0 at the inner boundary is easily derived,

p0 = (γ − 1)ρ0ε0. (6)

Thus, the free parameters, Ė, θj, Γj, ε0, and τj are crucial for the evolution of the jet.
Especially, from the relativistic Bernoulli’s principle, the maximum Lorentz factor of the jet
can be roughly estimated as,

Γmax " (1 + γε0)Γj. (7)

In this work, the initial Lorentz factor and the specific internal energy are assumed to be
Γj = 5 and ε0 = 20, which leads to the maximum Lorentz factor of Γmax ∼ 140.

2.3. Mapping procedure

To follow the evolution of the jet for a long time, e.g., up to ∼ 105-106 s after the
injection, a large computational domain is required. The jet propagates at ultra-relativistic
speeds, which clearly indicates that the scale of the ejecta reaches ∼ 3 × 1015-3 × 1016 cm.
On the other hand, the scale of the region where the jet is injected is that of the iron core
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Zhang+ (2003)



計算結果

t~1 sec



計算結果

t=5.3 sec

t~5 sec



計算結果

t=7.0 sec

t~7 sec



計算結果

t=10.3 sec

t~17 sec



計算結果

t=17.4 sec

t~30 sec



計算結果

t=33.1 sec

t~100 sec



計算結果

t=1760 sec

t~500 sec



計算結果

t~10   sec6

t>1000 sec



計算結果

t~10   sec6

t>1000 sect~106 sec

dM/dt=10-2 M◉/yrの場合



計算結果

t~10   sec6

t>1000 sect~7×106 sec

dM/dt=10-2 M◉/yrの場合



計算結果

t~10   sec6

t>1000 sect~3×107 sec

dM/dt=10-2 M◉/yrの場合



Ejectaのhomologous expansion
jet軸に沿ったdensity/Lorentz 

factor profiles

Lorentz factorの増加は160程

度でとまる

homologousな進化

時間とともにsupernova成分

とは分離する

E    ~1052erg
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shellの密度分布のpeakの位置・

Lorentz factor・温度の時間変化

homologousな進化

ρ∝ t-3

P/ργ=Const. ⇒ P ∝ t-4

温度はP=aT4/3から見積もる

と、T ∝ t-1
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Ejectaのhomologous expansion

Homologousかつ
adiabaticに進化

dM/dt=10-7 M◉/yrの場合



dM/dt=10-7 M◉/yrと10-2 M◉/yr

との比較(jet軸に沿った圧力分布)

濃いCSMを置いた場合は、CSM中

を伝搬するforward shockの

pressureが卓越する

濃いCSMの影響

��
��

��
��

��
�

��
�

��
�

��



��
�

��
��

��
��

��
��

��
�


��
��

��
��

��
��

��
��

��
��

��
��

��
�	

��
�


��
��
��
��
��
��
��
��

��
�

����������

�����

��
��

��
��

��
�

��
�

��
�

��



��
�

��
��

��
��

��
��

��
�


��
��
��
��
��
��
��
��

��
�

∝r-2

∝r-4

48 CHAPTER 3. HIGH-ENERGY EMISSIONS FROM GRB JETS

!"
#!$

!"
#!!

!"
#%

!"
#&

!"
#'

!"
#$

!"
#!

!"
!

!"
$

!"
'

!"
&

!"
%

!"
!"

!"
!!

()*+,-.

()
*+
,-
./
01
/2
3
#$
4

56(,7+/0234

Figure 3.9: The radial profile of the density
of the progenitor star used in this work. The
mass-losss rate of 10�7

M� yr�1 is adopted.

Figure 3.10: The radial profile of the mass
fractions of some nuclei of the progenitor star
used in this work.

evolves as ps / ⇢1. Thus, in the case of uniform ambient media, the post-shock pressure does not

evolve with time, while it is inversely proportional to the square of the time in the wind case.

3.4 Hydrodynamical simulation of the jet

In this section, I describe numerical techniques to calculate the long-term evolution of a jet

injected into the core of a massive star. I have developed a code to solve the two-dimensional

relativistic hydrodynamical equations in the spherical coordinates (r, ✓). The details of the code

are summarized in Appendix D. The simulations assume the axial and equatorial symmetry.

3.4.1 Progenitor model

I use one of the pre-supernova stellar models provided by Ref. [87] as the progenitor model. The

name of the model is 16TI, which is used in some previous works on GRB jets (e.g., Refs.[91, 52,

50]). The mass and the radius of the star are 14 M� and ⇠ 4⇥ 1010 cm. I attach a steady wind

with a constant mass-loss rate Ṁ and a velocity vw outside the star, Eq. (3.11). In this work,

the wind velocity is fixed to be 1000 km s�1. In the fiducial model, the mass-loss rate is set to

be 10�7
M� yr�1. When this value is adopted, the wind hardly a↵ects the propagation of the

ejecta. I carry out another set of calculations with Ṁ = 10�2
M� yr�1 and 10�3

M� yr�1 to

clarify e↵ects of the presence of the dense CSM on the evolution of the ejecta. For the interstellar

medium (ISM), I assume a uniform medium with the number density of 100 cm�3. Thus, the

density ⇢ext of the ambient medium is given by the following function of the radius,

⇢ext = ⇢w(r) + ⇢ISM, (3.14)
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Here, the mass density of the ISM is ⇢ISM = 100mu g cm�3, where mu = 1.66 ⇥ 10�24 g is

the atomic mass unit. The profiles of the density and the mass fractions of some nuclei of the

progenitor model are shown in Figures 3.9 and 3.10.

3.4.2 Jet injection

The injection of the jet is realized in the same manner as Ref. [91]. I impose a boundary condition

on the physical variables at the inner boundary. The radius of the inner boundary is set to be

Rin = 3 ⇥ 108 cm. The values at the boundary are determined by specifying the following free

parameters, the energy deposition rate Ė, the jet opening angle ✓j, the initial Lorentz factor �j,

the specific internal energy ✏0 normalized by c

2 (hereafter, I adopt the normalization c = 1 for

simplicity), and the duration of the jet injection ⌧j. The boundary condition to generate a jet is

imposed in the directions with ✓ < ✓j and for 0 < t < ⌧j. In this work, the jet opening angle is

fixed to be ✓j = 10�. I only consider the energy deposition at a constant rate. Thus, the total

injected energy yields Etot = Ė⌧j. The radial component of the velocity at the inner boundary is

given by,

vj =

s
1�

1

�2
j

, (3.15)

and the other components are set to be zero. Using the jet opening angle ✓j and the radius of

the inner boundary Rin, the area Sj through which the jet is injected can be expressed as,

Sj = 2⇡R2
j (1� cos ✓j). (3.16)

Thus, the energy flux is given by

Ė

Sj
=

Ė

2⇡R2
j (1� cos ✓j)

. (3.17)

Equating this expression with the energy flux along the radial direction given in Equation (A.51),

(⇢h�2
j �D)vj, I obtain the density ⇢0 at the inner boundary,

⇢0 =
Ė

2⇡R2
in(1� cos ✓j)

1

vj[(1 + �✏0)�2
j � �j]

, (3.18)

where I have used the equation of state for an ideal gas with the adiabatic index of �(= 4/3).

The expression of the pressure p0 at the inner boundary is easily derived,

p0 = (� � 1)⇢0✏0. (3.19)

Thus, the free parameters, Ė, ✓j, �j, ✏0, and ⌧j are crucial for the evolution of the jet.

Especially, from the relativistic Bernoulli’s principle, the maximum Lorentz factor of the jet can
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forward shock is expressed as

Eext =
4⇡

3
r

3
decn0c

2�2
. (3.8)

On the other hand, the injected energy Ein can be expressed in terms of the mass of the shell by

Ein = �Mshellc
2
. (3.9)

Equating these two expressions, the following relation is obtained,

4⇡

3
r

3
decn0� ⌘ Msw� = Mshell, (3.10)

where Msw denotes the mass of the matter swept by the forward shock. This relation means that

the deceleration begins at which the swept mass is comparable with the mass of the shell divided

by the Lorentz factor. Solving this equation with respect to the radius rdec, it is found that the

deceleration radius is inversely proportional to the cubic root of the density n0, rdec / n

�1/3
0 . In

the case of the steady wind with the mass-loss rate Ṁ and the velocity vw, in which the density

⇢w of the ambient medium is inversely proportional to the square of the radius,

⇢w =
Ṁ

4⇡r2vw
, (3.11)

the mass of the matter swept by the forward shock should be evaluated in the following way,

Msw =

Z
rdec

0
⇢w4⇡r

2
dr =

Ṁ

vw
rdec, (3.12)

The deceleration radius is inversely proportional to the mass-loss rate, rdec / Ṁ

�1.

The interaction between the ejecta moving at relativistic speeds and the CSM is investigated

under the assumption of spherical symmetry by Ref [12] for the first time. They derived a series

of self-similar solution of the flow. From their result, the time dependence of some physical

quantities, e.g., the density and the pressure, of the shocked medium must be di↵erent from that

in the homologous expansion phase described in the previous section. In the following discussion,

the strong shock approximation, in which the pressure of the CSM is negligible, is assumed.

Under the approximation, the post-shock pressure ps is written in terms of the pre-shock density

⇢1 and the shock Lorentz factor �s as

ps =
2⇢1�2

s

3
. (3.13)

The time evolution of the pressure ps is characterized by those of the pre-shock density and the

shock Lorentz factor. Especially, at the very beginning of the ejecta-CSM interaction in which

the kinetic energy of the ejecta is still larger than that of the matter swept by the forward shock,

the shock Lorentz factor is expected to be nearly constant. In this phase, the post-shock pressure
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The interaction between the ejecta moving at relativistic speeds and the CSM is investigated

under the assumption of spherical symmetry by Ref [12] for the first time. They derived a series

of self-similar solution of the flow. From their result, the time dependence of some physical

quantities, e.g., the density and the pressure, of the shocked medium must be di↵erent from that

in the homologous expansion phase described in the previous section. In the following discussion,

the strong shock approximation, in which the pressure of the CSM is negligible, is assumed.

Under the approximation, the post-shock pressure ps is written in terms of the pre-shock density

⇢1 and the shock Lorentz factor �s as

ps =
2⇢1�2

s

3
. (3.13)

The time evolution of the pressure ps is characterized by those of the pre-shock density and the

shock Lorentz factor. Especially, at the very beginning of the ejecta-CSM interaction in which

the kinetic energy of the ejecta is still larger than that of the matter swept by the forward shock,

the shock Lorentz factor is expected to be nearly constant. In this phase, the post-shock pressure

dM/dt=10-2 M◉/yr

dM/dt=10-7 M◉/yr



さらに時間が経つと、Forward 

shockが減速し始める

Reverse shockの形成

⇒  dM/dt=10-2 M◉/yrの場合の、

jet軸に沿ったLorentz factor/

density/pressure profiles

Reverse shockの形成
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ejectaのLorentz factorが高い部分

は、homologous expansion          

→ 単純なスケーリング則に従う

ただし、　　　　　　はprogenitor 

modelやinjection conditionに依存

する
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the number of electrons Ne are clearly Lorentz invariants, the optical depth must be a Lorentz

invariant.

One should be careful when using the formula (B.38), because the optical depth can be

significantly underestimated if one uses the formula for a single snapshot of the velocity and the

density profile. One must notice that the ejecta moves at velocities close to the speed of light.

For example, without taking the e↵ect into account, the optical depth of the uniform medium

moving at the velocity c� treated above was given by,

L

lmfp
= (1� �)�Tn

0
eL

0
. (B.43)

This is equivalent to calculating the optical depth by using only the density structure of the

medium at t = 0 (see Figure B.5). In the case of ultra-relativistic flows, this expression is

approximated by
L

lmfp
'

�Tn
0
eL

0

�2
. (B.44)

In other words, the optical depth is significantly underestimated by a factor of ��2.

⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45)
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⇢0 ⇠ 10�7 [g cm�3] T0 ⇠ 107[K] L010
12[cm] (B.47)

t0, ⇢0, T0, ⌧⇤ (B.48)

Ejectaのhomologous expansion

これらは、ある程度普遍的



shellのEffective optical depth

Optical depth
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to introduce the e↵ective optical depth ⌧⇤ as

⌧⇤ =
p
⌧a(⌧a + ⌧s), (B.12)

which can also be used in the case ↵

⌫

� �

⌫

. If the e↵ective optical depth is larger than unity,

absorption of photons occurs in the medium.

When the e↵ective optical depth exceeds unity, the distribution of photons in the phase space

is represented by a particular function. I define the intensity I

⌫

of radiation as the energy per

unit frequency going through unit area per unit time into unit solid angle. When a photon gas

is strongly coupled with matter with the temperature T by absorption, the intensity is expressed

as

B

⌫

(T ) =
2h⌫3

c

2

1

exp(h⌫/kBT )� 1
, (B.13)

which is called the Planck function.

B.3 Radiative transfer in scattering dominated media

In scattering-dominated media, the distribution function of photons can deviate from that in

thermal equilibrium. Then, how the distribution function and its time evolution are determined?

In fact, the following equation governs the distribution of photons di↵using in an electron plasma

characterized by the number density n(x), the velocity field u(x), and the temperature T (x),

@f0

@t

+ u ·rf0 = r

✓
c

3n�T
rf0

◆
+

r · u

3
q

@f0

@q

+ cn�T

⇢
1

q

2

@

@q


q

4 kT

mc

2

@f0

@q

+
q

4

mc

f0(1 + f0)

��
,

(B.14)

The derivation of this equation is reviewed in Chapter C. Here, I consider the physical meaning

of this equation.

B.3.1 The advection and di↵usion in the physical space

Neglecting the second and third terms in the right-hand side of Equation (B.14), one obtains the

following advection-di↵usion equation,

@f0

@t

+ u ·rf0 = r

✓
c

3n�T
rf0

◆
. (B.15)

The left-hand side of this equation is the time derivative of the photon distribution along the flow

of the electron plasma. In other words, it indicates the advection of photons along the flow. For

a matter with an infinite optical depth equivalent to the vanishing mean free path, n�T = 1,

Equation (B.15) yields
@f0

@t

+ u ·rf0 = 0, (B.16)
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0

�2
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⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45):scattering opacity
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In other words, the optical depth is significantly underestimated by a factor of ��2.

⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45):free-free absorption coefficient
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In other words, the optical depth is significantly underestimated by a factor of ��2.

⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45):shellの厚み
＊co-moving frameで見積もる
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homologous expansionの開始: t=t0~100 [s]
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THE LONG-TERM EVOLUTION OF AN

ULTRA-RELATIVISTIC JET EMANATING A MASSIVE STAR

AND ITS IMPLICATIONS TO GRB PROMPT EMISSIONS

AKIHIRO SUZUKI1,2 and TOSHIKAZU SHIGEYAMA1

ABSTRACT

The long-term evolution of an ultra-relativistic jet injected into the core of a
massive star is investigated by performing a series of hydrodynamical simulations.
The jet propagates in the star and emerges from the surface and then an optically
thick shell moving at ultra-relativistic speeds forms on the top of the jet. After
the formation, the shell expands homologously. The evolutions of the density,
the Lorentz factor, and the pressure of the flow along the jet axis are analyzed
in detail. Using the behaviors of the physical variables of the shell, we develop a
model to explain the GRB prompt emission based on the photospheric emission
from the shell. Our model successfully reproduces the low-energy part of the
canonical spectra of gamma-ray bursts, i.e., the Band function. Furthermore,
from the results of the simulations, we consider the origin of the delayed high-
energy component of the prompt emission.

Subject headings: gamma-rays: bursts – shock waves – relativity –ISM: jets and
outflows

1. INTRODUCTION

⇢

0

⇠ 10�7 [g cm�3] T

0

⇠ 107[K] L

0

. 1012[cm] � ⇠ 160 (1)

Since the discovery of gamma-ray bursts (GRBs), the mechanism to produce their prompt
emission remains enigmatic (see, e.g., ??, for review). So far, it is widely accepted that long-
duration GRBs originate from collapsing massive stars. At the moment of the gravitational

1
Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo

113-0033, Japan.

2
Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
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electron scattering yields

⌧s = es⇢L = 2⇥ 107. (3.24)

Here, the opacity for electron scattering es is given by,

es = 0.2(1 +X) cm2 g�1
, (3.25)

where I have assumed that no hydrogen is present in the shell, X = 0.

For free-free absorption, I use the following formula to evaluate the absorption coe�cient ↵↵
⌫

for a photon with the frequency ⌫,

↵

↵
⌫

= 3.7⇥ 108T�1/2
Z

2
neni⌫

�3(1� e

�h⌫/kBT )g↵ , (3.26)

(see, Appendix B), where ne and ni are the electron and ion number densities, Z the atomic

number of ions, and g↵(⇠ 1) the gaunt factor for free-free absorption. I consider the opacity for

incident photons with the frequency of ⌫ = kBT/h. From the spacial distribution of species of

the progenitor model adopted here, oxygen is expected to be the dominant species in the shell.

Thus, I set the atomic number Z to be Z = 8. The absorption coe�cient yields,

↵

↵
⌫

⇠ 10�13 cm�1
, (3.27)

which leads to the absorption optical depth of

⌧a = ↵

↵
⌫

L ⇠ 10. (3.28)

Since the e↵ective optical depth ⌧⇤ is much larger than unity,

⌧⇤ =
p
⌧a(⌧a + ⌧s) ⇠ 103 � 1, (3.29)

it is clear that the radiation from the shell has been relaxed to the black body. Furthermore,

from the time dependence of the density and the width of the shell, the black body emission is

expected to last up to t ⇠ 104 s .

3.6.2 Photospheric emission from the optically thick shell

From the result in the previous section, the emission from the shell turns out to be the black body

radiation at least up to t ⇠ 104 s in the laboratory frame. Here, it is noteworthy that the duration

of the emission becomes shorter than 1 s in the observer frame, tobs = (t � t0)/�2 = 0.2 s. Till

the shell becomes transparent from the detachment from the SN component, the temperature of

the shell decreases by two orders of magnitude. Here, I have assumed that the radiation pressure

dominates the shell, p = aT

4
/3. As a result, the observer sees the superposition of the black body

spectra with di↵erent temperatures, i.e., the multi-color black body. The photospheric emission

 t~a few×103 secで     ~1
@t=t0~100 s

ただし、                    はprogenitor model, injection conditionに依存
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the number of electrons Ne are clearly Lorentz invariants, the optical depth must be a Lorentz

invariant.

One should be careful when using the formula (B.38), because the optical depth can be

significantly underestimated if one uses the formula for a single snapshot of the velocity and the

density profile. One must notice that the ejecta moves at velocities close to the speed of light.

For example, without taking the e↵ect into account, the optical depth of the uniform medium

moving at the velocity c� treated above was given by,

L

lmfp
= (1� �)�Tn

0
eL

0
. (B.43)

This is equivalent to calculating the optical depth by using only the density structure of the

medium at t = 0 (see Figure B.5). In the case of ultra-relativistic flows, this expression is

approximated by
L

lmfp
'

�Tn
0
eL

0

�2
. (B.44)

In other words, the optical depth is significantly underestimated by a factor of ��2.

⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45)
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⇢0 ⇠ 10�7 [g cm�3] T0 ⇠ 107[K] L010
12[cm] (B.47)

t0, ⇢0, T0, ⌧⇤ (B.48)

そこで、黒体放射を続ける時間には幅を持たせて考える

B.4. EMISSIONS FROM RELATIVISTIC FLOWS 93

the number of electrons Ne are clearly Lorentz invariants, the optical depth must be a Lorentz

invariant.

One should be careful when using the formula (B.38), because the optical depth can be

significantly underestimated if one uses the formula for a single snapshot of the velocity and the

density profile. One must notice that the ejecta moves at velocities close to the speed of light.

For example, without taking the e↵ect into account, the optical depth of the uniform medium

moving at the velocity c� treated above was given by,

L

lmfp
= (1� �)�Tn

0
eL

0
. (B.43)

This is equivalent to calculating the optical depth by using only the density structure of the

medium at t = 0 (see Figure B.5). In the case of ultra-relativistic flows, this expression is

approximated by
L

lmfp
'

�Tn
0
eL

0

�2
. (B.44)

In other words, the optical depth is significantly underestimated by a factor of ��2.

⌧s = s⇢L, ⌧a = ↵

⌫

L (B.45)

⇢ = ⇢0

✓
t

t0

◆�3

T = T0

✓
t

t0

◆�1

L = L0

✓
t

t0

◆1

(B.46)

⇢0 ⇠ 10�7 [g cm�3] T0 ⇠ 107[K] L010
12[cm] (B.47)

t0, ⇢0, T0, ⌧⇤ (B.48)

Optical depth



���
���
���
���
��	
��


�
��
��
��
��
��
��
�
�

�

��

���

����

��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�	

� �� ��� ���� ��
�

��
�

��
�

��
	

�
��
��
��
��
��
�

����������

1∝t

-1∝t

0∝t

    =1となる時刻 t1=500, 104 sec

観測者は、T=107Kから105Kくら

いまでの黒体放射の重ね合わせを

観ることになる
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To construct the multi-color black body, we need to know the evolution of the temper-
ature and the photospheric radius of the shell. At first, we consider the shell temperature.
After the emergence from the stellar surface, the shell cools adiabatically. We express the
time dependence of the temperature of the shell as

T = Ts,obs(t/t0)
−ζ , (1)

where t0 is the time when the shell emerges from the surface and the time is measured in
the observer frame. The exponent η is determined by the time evolution of the volume
of the shell. If the shell is composed of uniform matter moving with the same velocity,
the width of the shell along the direction of the propagation is almost constant. On the
contrary, the shell expands along the transverse direction at a constant rate, which means
that the volume of the shell is proportional to t2. Then, the temperature of the shell drops
as T ∝ t−2/3, i.e., ζ = 2/3, because the relation T ∝ V −1/3 holds for the adiabatic expansion
of radiation-dominated gases. On the other hand, if we consider the radial expansion of the
shell, the shell volume increases faster than ∝ t2, which leads to 2/3 < ζ. Next, we express
the photospheric radius as

Rph = R∗(t/t0)
η, (2)

where R∗ is the stellar radius. In the case of a geometrically thin shell, the photospheric
radius is equivalent to the position of the shell measured from the central object. Because
the shell moves with a constant velocity, the parameter η becomes unity. However, if we
consider a geometrically thick shell, the photosphere can move the inward of the shell. Then,
the photospheric radius increases more slowly, η < 1.

Since the time of the shock breakout t0 is of the order of the light crossing time of the
stellar radius divided by 2Γ2

s , R∗/2cΓ2
s ∼ 10−4 s, where the stellar radius is assumed to be

several 1010 cm and Γs = 100, the time required for the shell temperature to be much smaller
than the initial value is smaller than the typical duration of the GRB prompt emission. For
example, the shell temperature becomes a thousand times smaller than the initial value at
t = 1000t0 ∼ 10−1 s for ζ = 1. Therefore, the observer sees black body radiation with
T0,obs/1000 < T < T0,obs almost at the same time. Thus, we can obtain the spectrum F (ε) of
the photospheric emission from the shell by integrating the black body spectrum multiplied
by the emitting area with respect to the time t,

F (ε) ∝
∫ t1

t0

R2
phε

2

exp(ε/ΓkT ) − 1
dt, (3)

Rph = R0

(
t

t0

)ζ

, T = T0

(
t

t0

)−ξ

(4)
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This is equivalent to calculating the optical depth by using only the density structure of the

medium at t = 0 (see Figure B.5). In the case of ultra-relativistic flows, this expression is

approximated by
L
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�Tn
0
eL

0
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. (B.44)

In other words, the optical depth is significantly underestimated by a factor of ��2.
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To construct the multi-color black body, we need to know the evolution of the temper-
ature and the photospheric radius of the shell. At first, we consider the shell temperature.
After the emergence from the stellar surface, the shell cools adiabatically. We express the
time dependence of the temperature of the shell as

T = Ts,obs(t/t0)
−ζ , (1)

where t0 is the time when the shell emerges from the surface and the time is measured in
the observer frame. The exponent η is determined by the time evolution of the volume
of the shell. If the shell is composed of uniform matter moving with the same velocity,
the width of the shell along the direction of the propagation is almost constant. On the
contrary, the shell expands along the transverse direction at a constant rate, which means
that the volume of the shell is proportional to t2. Then, the temperature of the shell drops
as T ∝ t−2/3, i.e., ζ = 2/3, because the relation T ∝ V −1/3 holds for the adiabatic expansion
of radiation-dominated gases. On the other hand, if we consider the radial expansion of the
shell, the shell volume increases faster than ∝ t2, which leads to 2/3 < ζ. Next, we express
the photospheric radius as

Rph = R∗(t/t0)
η, (2)

where R∗ is the stellar radius. In the case of a geometrically thin shell, the photospheric
radius is equivalent to the position of the shell measured from the central object. Because
the shell moves with a constant velocity, the parameter η becomes unity. However, if we
consider a geometrically thick shell, the photosphere can move the inward of the shell. Then,
the photospheric radius increases more slowly, η < 1.

Since the time of the shock breakout t0 is of the order of the light crossing time of the
stellar radius divided by 2Γ2

s , R∗/2cΓ2
s ∼ 10−4 s, where the stellar radius is assumed to be

several 1010 cm and Γs = 100, the time required for the shell temperature to be much smaller
than the initial value is smaller than the typical duration of the GRB prompt emission. For
example, the shell temperature becomes a thousand times smaller than the initial value at
t = 1000t0 ∼ 10−1 s for ζ = 1. Therefore, the observer sees black body radiation with
T0,obs/1000 < T < T0,obs almost at the same time. Thus, we can obtain the spectrum F (ε) of
the photospheric emission from the shell by integrating the black body spectrum multiplied
by the emitting area with respect to the time t,

F (ε) ∝
∫ t1

t0

R2
phε

2

exp(ε/ΓkT ) − 1
dt, (3)

Rph = R0

(
t

t0

)ζ

, T = T0

(
t

t0

)−ξ

(4)
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the number of electrons Ne are clearly Lorentz invariants, the optical depth must be a Lorentz

invariant.

One should be careful when using the formula (B.38), because the optical depth can be

significantly underestimated if one uses the formula for a single snapshot of the velocity and the

density profile. One must notice that the ejecta moves at velocities close to the speed of light.

For example, without taking the e↵ect into account, the optical depth of the uniform medium

moving at the velocity c� treated above was given by,

L

lmfp
= (1� �)�Tn

0
eL

0
. (B.43)

This is equivalent to calculating the optical depth by using only the density structure of the

medium at t = 0 (see Figure B.5). In the case of ultra-relativistic flows, this expression is

approximated by
L

lmfp
'

�Tn
0
eL

0

�2
. (B.44)

In other words, the optical depth is significantly underestimated by a factor of ��2.
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To construct the multi-color black body, we need to know the evolution of the temper-
ature and the photospheric radius of the shell. At first, we consider the shell temperature.
After the emergence from the stellar surface, the shell cools adiabatically. We express the
time dependence of the temperature of the shell as

T = Ts,obs(t/t0)
−ζ , (1)

where t0 is the time when the shell emerges from the surface and the time is measured in
the observer frame. The exponent η is determined by the time evolution of the volume
of the shell. If the shell is composed of uniform matter moving with the same velocity,
the width of the shell along the direction of the propagation is almost constant. On the
contrary, the shell expands along the transverse direction at a constant rate, which means
that the volume of the shell is proportional to t2. Then, the temperature of the shell drops
as T ∝ t−2/3, i.e., ζ = 2/3, because the relation T ∝ V −1/3 holds for the adiabatic expansion
of radiation-dominated gases. On the other hand, if we consider the radial expansion of the
shell, the shell volume increases faster than ∝ t2, which leads to 2/3 < ζ. Next, we express
the photospheric radius as

Rph = R∗(t/t0)
η, (2)

where R∗ is the stellar radius. In the case of a geometrically thin shell, the photospheric
radius is equivalent to the position of the shell measured from the central object. Because
the shell moves with a constant velocity, the parameter η becomes unity. However, if we
consider a geometrically thick shell, the photosphere can move the inward of the shell. Then,
the photospheric radius increases more slowly, η < 1.

Since the time of the shock breakout t0 is of the order of the light crossing time of the
stellar radius divided by 2Γ2

s , R∗/2cΓ2
s ∼ 10−4 s, where the stellar radius is assumed to be

several 1010 cm and Γs = 100, the time required for the shell temperature to be much smaller
than the initial value is smaller than the typical duration of the GRB prompt emission. For
example, the shell temperature becomes a thousand times smaller than the initial value at
t = 1000t0 ∼ 10−1 s for ζ = 1. Therefore, the observer sees black body radiation with
T0,obs/1000 < T < T0,obs almost at the same time. Thus, we can obtain the spectrum F (ε) of
the photospheric emission from the shell by integrating the black body spectrum multiplied
by the emitting area with respect to the time t,

F (ε) ∝
∫ t1

t0

R2
phε

2

exp(ε/ΓkT ) − 1
dt, (3)

Rph = R0

(
t

t0

)ζ

, T = T0

(
t

t0

)−ξ

(4)
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where t1 is the time for the shell to be transparent. In this study, the time t1 is assumed to
be much longer than t0. Introducing a new variable s as

s =
ε

ΓkT
=

ε

ΓkT0

(
t

t0

)ξ

(5)

the dependence of the energy ε in Eq. (3) is expressed as

F (ε) ∝ ε(2ξ−2ζ−1)/ξ

∫ s1

s0

s2ζ/ξ+1/ξ−1

es − 1
ds, (6)

where s0 = s1(t0/t1)ζ = ε/kTs,obs. The resultant spectrum is a broken power-law in the energy
range of ε < kTs,obs. For (t0/t1)ζkTs,obs < ε < kTs,obs, the exponents is (3ζ − 2η + 1)/ζ. The
low-energy spectrum of the early component of the prompt emission corresponds to this part.
For example, if we take ζ = η = 1, which leads to the photon spectrum of F (ε)/ε ∝ ε−1, the
canonical value of the low-energy part of the Band function is reproduced, α = −1. Below the
energy (t0/t1)ζkTs,obs, the exponent becomes 2, because the spectra can be approximated by
the Rayleigh-Jeans part of the black body spectrum with the temperature of (t0/t1)ζkTs,obs.
On the other hand, above the energy kTs,obs, the spectrum is expected to connect that of
the breakout emission smoothly as shown in Fig. 3.

5. DISCUSSIONS

5.1. Energetics

Here we calculate the observed energy of the breakout and the photospheric emission
from the shell. Since the observer sees the black body radiation from the shell from the emer-
gence of the shell at t0 to the time when the shell becomes transparent t1, the isotropically
radiated energy Eph is given by

Eph =

∫ t1

t0

2πR2
phσT 4dt = 2πR2

∗σT 4
s,obst0

∫ t1

t0

(
t

t0

)2η−4ζ

d(t/t0), (7)

where σ is the Stefan-Boltzmann constant. The integrand is monotonically decreasing func-
tion of t/t0, because the exponent appearing in Fig. (6), 3ζ − 2η + 1, should be nearly zero
to reproduce the low-energy part of the Band function. Then, the integral is turn out to be
of the order of unity, carrying out the integration. Therefore, the energy Eph is estimated
to be of the order of ∼ 1052 for R∗ = 1011 cm, kTs,obs = 0.34 MeV. On the other hand, the
observed isotropic energy Eiso of the prompt emission distributes around 1052 ! Eiso ! 1054

in ergs. The estimated value is smaller than the observed value, which indicate that the
radiated energy of the prompt emission is dominated by the delayed component.
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Figure B.4: The mean free path in the frames K and K

0.

with the velocity c�. In this frame, the separation between the electrons is shorter than that

in the frame K by a factor of 1/�, where � = 1/
p
1� �

2 is the Lorentz factor of the medium.

Furthermore, as shown in the right panel of Figure B.4, the distance at which the photon travel

from the scattering by electron 1 to that by electron 2 becomes longer than that of the initial

separation of the two electron by a factor 1/(1 � �). This is because the electrons moves with

the velocity close to the speed of light. As the result, the mean free path lmfp in the frame K is

expressed in terms of that l0mfp in the frame K

0 as follows,

lmfp =
l

0
mfp

�(1� �)
. (B.36)

Denoting the velocity vector of the flow normalized by the speed of light by � and the unit vector

along the direction of the photon by l, this result can be generalized as follow,

lmfp =
l

0
mfp

�(1� � · l)
, (B.37)

which is equivalent to the expression given by Ref. [4]. Thus, for the propagation of the photon

over a small distance ds, the optical depth d⌧ in the frame K can be calculated as,

d⌧ =
ds

lmfp
= �(1� � · l)�Tn

0
eds. (B.38)

One should emphasize that this expression is valid for an infinitely small ds.

Next, I derive the optical depth of the uniform medium with the length L

0 in the co-moving

frame K 0. The situation is depicted in Figure B.5. A photon propagating along the motion of the

medium is again considered. From the Lorentz contraction, the length of the medium is given by
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One should emphasize that this expression is valid for an infinitely small ds.
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frame K 0. The situation is depicted in Figure B.5. A photon propagating along the motion of the

medium is again considered. From the Lorentz contraction, the length of the medium is given by
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Figure B.5: The path of a photon in a uniform medium moving with the constant velocity c�.
The moving medium is represented as the yellow rectangle.

L = L

0
/�. The photon is located at the left end of the medium at t = 0 (see Figure B.5). Since

the photon is faster than the medium, it travels in the medium and then reaches the right end.

The photon reaches the right end of the medium at time t satisfying ct � c�t = L. Thus, the

distance at which the photon travel before escaping from the medium is given by

ct =
L

1� �

=
L

0

�(1� �)
(B.39)

This expression can be generalized in a similar way to the mean free path as follows,

ct =
L

0

�(1� � · l)
. (B.40)

Using this expression, the optical depth ⌧ of the medium in the frame K is calculated as follows,

⌧ =

Z
ct

0
d⌧ = �Tn

0
eL

0
, (B.41)

which is equivalent to the optical depth ⌧ calculated in the frame K

0,

⌧

0 =
L

0

l

0
mfp

= �Tn
0
eL

0
. (B.42)

This is why one can conclude that the optical depth is Lorentz invariant, ⌧ 0 = ⌧ . This result is

naturally understood by considering the fact that the calculating the optical depth is equivalent

to counting the number of electrons in a volume. As I have reviewed above, denoting the area

of cross section of the medium by S, the optical depth is expressed as �TNe/S, where Ne is the

number of electrons in the volume SL, Ne = neSL. Since the cross section �T, the area S, and
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medium is again considered. From the Lorentz contraction, the length of the medium is given by
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Figure 3.23: The relation between the observer and laboratory times for the models with Ṁ =
10�7 and 10�2

M� yr�1.

rapidly decreases at t > 108 s for both models. This is because the shell significantly decelerates

at t > 108 s and the reverse shock begins to develop.

Using the Lorentz factor as a function of the time measured in the laboratory frame, one can

calculate the observer time tobs by using the formula (3.22). The resultant relations between the

observer and laboratory times for the models with Ṁ = 10�7 and 10�2
M� yr�1 are shown in

Figure 3.23. The observer time is proportional to the laboratory time, tobs / t up to t ⇠ 107 s,

which can be understood from Equation (3.23). After that, the observer time rapidly increases

because of the deceleration of the shell. The rate of the increase reflects that of the decrease of

the maximum Lorentz factor shown in Figures 3.21 and 3.22.

3.6 Emissions from the shell around the jet axis

In this section, I consider the emission from the shell that forms in the later epoch of the evolution

of the ultra-relativistic jet. Only the emission from the matter around the jet axis is treated

because a distant observer along the jet axis cannot see emissions from ejecta at the opening

angle larger than 1/� due to the relativistic beaming e↵ect (see, Appendix B).

3.6.1 Optical thickness of the shell

The optical depth of the shell is crucial to specify the radiative process. I calculate it for the

fiducial model in the following approximate way. I consider the two opacity sources, electron

scattering and free-free absorption. I estimate the optical depth of the shell at t ⇠ 100 s,

the moment of the detachment of the shell from the supernova component. In the co-moving

frame, the width L of the shell is larger than that Llab in the laboratory frame by a factor of �,

L = �Llab ⇠ 1014 cm and the mass density is ⇢ ⇠ 10�6 g cm�3. Thus, the optical depth ⌧s for

Laboratory time vs Observer time
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Figure 3.21: Time evolutions of the maximum
Lorentz factor (the upper panel) and the post-
shock pressure (the lower panel) for the model
with Ṁ = 10�7

M� yr�1.
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Figure 3.22: Same as Figure 3.21, but for Ṁ =
10�2

M� yr�1.

3.5.6 Time measured in the observer frame

Here, I calculate the arrival time tobs of photons measured by a distant observer on the jet axis

by taking into account the evolution of the Lorentz factor of the flow along the jet axis. The

observer time is calculated in the following way. I assume that the emission from the jet starts

from t0 = 100 s, at which the Lorentz factor of the shell saturates, in the laboratory frame. The

observer sees the emission from the jet. Photons emitted at t0 reach the observer at tobs = 0. The

observer time tobs is defined as the delay of the shell from the photons. Thus, the observer time

tobs corresponding to the time t measured in the laboratory frame can be calculated by dividing

the di↵erence of the path length that photons and the jet proceed in the interval of t� t0 by the

speed of light,

tobs =
c(t� t0)�

R
t

t0
c

q
1� 1

�2dt

c

=

Z
t

t0

 
1�

r
1�

1

�2

!
dt. (3.22)

Apparently, if the Lorentz factor is constant and much larger than unity, � � 1, the observer

time is proportional to t� t0,

tobs '
t� t0

2�2
. (3.23)

In Figures 3.21 and 3.22, the time evolutions of the maximum Lorentz factor of the flow for

the models with Ṁ = 10�7 and 10�2
M� yr�1 are shown. The time evolutions of the pressure of

the medium behind the forward shock are also shown in Figure 3.21 and 3.22. For both models,

the pressure initially decreases as t

�2, because of the presence of the CSM with the density

proportional to r

�2. For the model with the low mass-loss rate Ṁ = 10�7
M� yr�1, the slope

of the evolution of the pressure becomes flat at t ⇠ 105 s. This transition indicates that the

forward shock reaches to the radius beyond which the uniform ISM is present. The pressure


