大質量CO星の非球対称爆発

「超新星爆発と数値シミュレーション」 @基研 2011.12.26-28

Type Ic Supernova

SN Ic

- H, He Emission Lineがない
- Core-Collapse
- ・CO Wolf-Rayet 星の爆発?

Aspherical Nature

Hypernova: E_{ex}~10⁵² erg SN1998bw → 非球対称爆発モデル (Maeda&Nomoto 2008) GRB: SN Ic との併発例

Woosley & Bloom 2006

Name				SN likeness/	
Burst/SN	z	Peak [mag]	T_{peak}^{a} [day]	designation	References
GRB 980425/1998bw	0.0085	$M_V = -19.16 \pm 0.05$	17	Ic-BL	b
GRB 030329/2003dh	0.1685	$M_V = -18.8$ to -19.6	10 - 13	Ic-BL	с
GRB 031203/2003lw	0.1005	$M_V = -19.0$ to -19.7	18 - 25	Ibc-BL	d
XRF 020903	0.25	$M_V = -18.6 \pm 0.5$	~15	Ic-BL	е
GRB 011121/2001dk	0.365	$M_V = -18.5$ to -19.6	12 – 14	I (IIn?)	f
GRB 050525a	0.606	$M_V \approx -18.8$	12	Ι	g
GRB 021211/2002lt	1.00	$M_U = -18.4$ to -19.2	~14	Ic	h
GRB 970228	0.695	$M_V \sim -19.2$	~ 17	Ι	i
XRR 041006	0.716	$M_V = -18.8$ to -19.5	16 - 20	Ι	j
XRR 040924	0.859	$M_V = -17.6$	~11	?	k
GRB 020405	0.695	$M_V \sim -18.7$	~17	Ι	1

SN2007bi

SN2007bi (Gal-Yum+2009)

- 非常に明るいSN Ic
- ・大量の⁵⁶Niを生成する (>4M_{sun})
 ⁵⁶Ni→⁵⁶Co→⁵⁶Fe
- [OI]の輝線より球対称に近い爆発 (Young+2010)

<u>Pair Instability Super Nova シナリオ</u>

~100M_{sun} He星のPISN ○Yieldを再現する ×He外層が残っている

<u>Core Collapse シナリオ (Moriya+2010)</u>

43M_{sun}のCO starの球対称爆発 ⁵⁶Ni量やLight Curveを説明可能

⁵⁶Ni in Spherical Explosion

Spherical Explosion

爆発エネルギーの解放(E_{ex}) 衝撃波球面の温度と半径 (Radiation Dominant)

$$E_{\rm ex} = \frac{4\pi a}{3} R^3 T^4$$

⁵⁶Niの合成温度

 $T_{\rm Ni} = 5 \times 10^9 {\rm K}$

- E_{ex}を上げる
- プロジェニターサーチ(星の進化計算)
 R_{Ni}内に含まれる質量を増やす

Model & Method

Progenitor Model

• M_{MS} = 110M_{sun}, Z=0.004 • Mass LossによりHe層まで 失ったCO Wolf-Rayet星 → M_{CO}= 43.1M_{sun} Yoshida&Umeda 2011

Hydrodynamics

- Code: 2D Axis-symmetric
- Explosion Energy: E_{ex}= 30×10⁵¹ erg
- 0 < t < T_{end} = 500 sec

Method

Aspherical Explosion

Abrupt energy injection Opening Angle (θ_{op})の異なる7モデル

Table 1: Calculated models										
Name	OA1	OA2	OA3	OA4	OA5	OA6	OA7			
$\theta_{\rm op}$	7.03°	11.3°	22.5°	45.0°	67.5°	78.8°	90.0°			
$\theta_{\rm op}/90^{\circ}$	5/64	1/8	1/4	1/2	3/4	7/8	1			

Nucleosynthesis

- Post-process計算
- ・282核種のNetwork (n,p~Br)

Thermodynamical Histories

Tracer Particle Method

• 5200 particles:

 $(\Delta m_i \sim 0.001 M_{sun})$

OA2 (\theta_{op}=1/8*90°) $M(ejec) = 17.4 M_{sun} M(^{56}Ni) = 1.77 M_{sun}$

Hydrodynamical Effect

OA5

OA4

 $M(ejec) = 28.7 M_{sun}$ $M(^{56}Ni) = 2.42 M_{sun}$

 $M(ejec) = 36.8 M_{sun}$ $M(^{56}Ni) = 2.47 M_{sun}$

time [sec]

 $M(^{56}Ni) = 4.01 M_{sun}$

OA6

Summary

<u>Chemical Abundance</u> <u>Ejected by Aspherical Explosion of Massive CO Star</u>

 ・中心付近で生成される isotope は θ_{op} に依存して Fallback や流体力学的効果を特に強く受ける

⁵⁶Niはθ_{op}/90° ≥ 7/8 で 4M_{sun}以上放出
 → 観測により示唆されるSN2007biの球対称性は 偶然ではない