Pairing correlations in Exotic Nuclei

September 22, 2011, Kyoto, Japan

Hiroyuki Sagawa Univesity of Aizu

- Introduction 1
- IS+IV pairing interactions 2.
- **BEC-BCS crossover in Borromian Nuclei** 3.
- **Di-neutron correlations and Dipole response** 4.
- 5. Summary

Isospin (IS+IV) dependent Pairing Interaction, BCS-BEC

J. Margeuron, Orsay

K. Hagino, Tohoku University, Japan

P. Schuck, Orsay

J. Carbonell, Grenoble

Systematic Study

Carlos Bertulani, Texas A&M University at Commerce Hong Feng Lu, China Agricultural University/UoA Hongliang Lui, Peking University

Isospin effects in the pairing gaps

P. Vogel, B. Jonson, and P. G. Hansen, Phys. Lett. 139B, 227 (1984).

$$\Delta_n^{\rm IS} = 13.3/A^{1/2} \tag{23}$$

$$\Delta_n^{\rm IS+IV} = [7.2 - 44(1 - 2Z/A)^2]/A^{1/3}$$
(24)

Odd-Even mass staggering

$$\Delta_3 = \frac{(-)^A}{2} (B(A) - 2xB(A+1) + B(A+2))$$

Isospin dependent Pairing Interaction

$$V_{pair}(1,2) = \frac{1-P_o}{2} V_0 g_\tau \left[\rho,\beta\tau_z\right] \delta(\vec{r}_1 - \vec{r}_2)$$

$$g_\tau \left[\rho,\beta\tau_z\right] = g_\tau^1 \left[\rho,\beta\tau_z\right] + g_\tau^2 \left[\rho,\beta\tau_z\right]$$

$$g_\tau^1 \left[\rho,\beta\tau_z\right] = 1 - f_s(\beta\tau_z)\eta_s \left(\frac{\rho}{\rho_0}\right)^{\alpha_s} - f_n(\beta\tau_z)\eta_n \left(\frac{\rho}{\rho_0}\right)^{\alpha_n}$$

$$f_s(\beta\tau_z) = 1 - f_n(\beta\tau_z), f_n(\beta\tau_z) = \beta\tau_z = \frac{\rho_n(r) - \rho_p(r)}{\rho(r)}\tau_z$$

J.Margueron, HS and K. Hagino PRC76,064316(2007) and PRC77,054309(2008) **Guideline for the parameters**

 $V_0 \rightarrow$ nn scattering length $\eta_s, \alpha_s, \eta_n, \alpha_n \rightarrow$ pairing gaps in nuclear and neutron matter

No free parameters!

nn scattering length and pairing strength

G. F. Bertsch and H. Esbensen

T-matrix theory provides the formulas

$$k \cot \delta = -\frac{2}{\alpha \pi} \left[1 + \alpha k_c + \frac{\alpha k}{2} \ln \frac{k_c - k}{k_c + k} \right]$$
$$= -\frac{1}{a_{nn}} - \frac{k}{\pi} \ln \frac{k_c - k}{k_c + k}$$

$$V_0 = 2\pi^2 \alpha \hbar^2 / m$$
$$\alpha = 2a_{nn} / (\pi - 2k_c a_{nn})$$

Pairing gap in uniform matter

Microscopic treatment based on the realistic N-N interaction. Cao, Lombardo, Schuck, PRC 74, 064301 (2006)

Bare:Argonne V_{18} +3body

Bare + medium polarization :

- reference calculation including only the bare NN interaction (bare),
- additional contribution from medium polarization effects (screened).

- In symmetric matter : shift the peak to lower densities.
- In neutron matter : reduction of the peak (/2).

Adjustment of the density dependent term

Pairing gap in uniform matter obtained from microscopic treatment based on the realistic N-N interaction Cao, Lombardo, Schuck, PRC 74, 064301 (2006)

Result of the adjustment :

Neutron Fermi momentum k_{Fn} : $\rho_n \equiv k_{Fn}^3/3\pi^2$.

POWERED BY LA

Free interacion V_0

effective range $r_{nn} = 4/\pi k_c \quad \alpha = 2a_{nn}/(\pi - 2k_c a_{nn})$ $v_0 = 2\pi^2 \alpha \hbar^2 / m$ unitary limit a_{nn}

 ∞

Parameters of the density dependent term

	$E_c = e_c/2$ (MeV)	η_{s}	α_{s}	η_n	α_n
bare	60	0.598	0.551	0.947	0.554
$g = g_1$	40	0.664	0.522	1.01	0.525
	20	0.755	0.480	1.10	0.485
	10	0.677	0.365	0.931	0.378
screened-I	60	7.84	1.75	0.89	0.380
$g = g_1$	40	8.09	1.69	0.94	0.350
	20	9.74	1.68	1.00	0.312
	10	14.6	1.80	0.92	0.230
screened-II	60	1.61	0.23	1.56	0.125
$g = g_1 + g_2$	40	1.80	0.27	1.61	0.122
$\eta_2 = 0.8$	20	2.06	0.31	1.70	0.122
	10	2.44	0.37	1.66	0.0939

POWERED BY

$$g_n^1[\rho,I] = 1 - f_s(I)\eta_s \left(\frac{\rho}{\rho_0}\right)^{\alpha_s} - f_n(I)\eta_n \left(\frac{\rho}{\rho_0}\right)^{\alpha_n}, \quad f_s(I) = 1 - f_n(I) \text{ and } f_n(I) = I.$$

Nuclear Matter

BCS superfluidity of Cooper pairs

- •Weakly interacting fermions
- •Correlation in **p** space (large coherence length)

 $\frac{\text{BCS - BEC}}{\text{crossover}}$ $\frac{|v_{\text{pair}}| \to \infty}{|v_{\text{pair}}|}$

BEC superfluidity of bound molecules

- Interacting"diatomic molecules"
- •Correlation in **r** space (small coherence length)

cf. BEC of molecules in ⁴⁰K

M. Greiner et al., Nature 426('04)537

Description of the BEC phase

→ The BCS equations describe also the BEC phase.
Ph. Nozières and S. Schmitt-Rink, J. Low Temp.
Phys. 59, 195 (1985)

Proof : Eq. (17) and (18) go over Schrödinger-like Eq.

$$\frac{p^2}{m}\Psi_{pair} + [1 - 2n_n(k)]\frac{1}{V}\mathrm{Tr}v_{nn}\Psi_{pair} = 2\nu_n\Psi_{pair}.$$
 (19)

where $\Psi_{pair} = u_k v_k$ is the pair wave function.

At zero density, $2\nu_n$ is the binding energy of Ψ_{pair} . \rightarrow strongly correlated (BEC state) if $\nu_n < 0$ The smooth change between BCS to BEC is also describe by the BCS equations.

DOWEDED

FIG. 5: (Color online) Neutron Cooper pair wave function $r^2 |\Psi_{pair}(r)|^2$ as a function of the relative distance r between the pair partner at the Fermi momenta $k_{Fn}=1.1, 0.8, 0.5$ and 0.2 fm^{-1} .

FIG. 8: (Color online) Top panels: Comparison between the rms radius ξ_{rms} of the neutron pair and the average inter-neutron distance $d_n = \rho_n^{-1/3}$ (thin line) as a function of the neutron Fermi momentum k_{Fn} in symmetric (left panel), asymmetric (central panel) and neutron matters (right panel). Bottom panels: The order parameter ξ_{rms}/d_n as a function of k_{Fn} . The boundaries of the BCS-BEC crossover are represented by the two dashed lines, while the unitary limit is shown by the dotted line. The two pairing interactions are used for the calculations.

Messages from Nuclear Matter Calculations

- New type of density dependent contact pairing interactions : reproduce microscopic pairing gaps in symmetric and neutron matter and depend on isospin-asymmetry.
- Medium polarization effects :

 \rightarrow reduction of the bare gap in neutron matter,

 \rightarrow strong attraction (quasi-BEC state) in low density symmetric matter.

BCS-BEC crossover phenomena

J. Margueron, H. Sagawa, K. Hagino, Phys. Rev. C 76,064316(2007)

IS+IV Pairing in Finite Nuclei

HFB calculations with canonical basis

SLy4+isospin dependent pairing interactionsCa, Ni, Sn, Pb isotopes

Pairing gaps

J.Margueron, HS and K. Hagino, PRC77,054309(2008)

Deformed HF+BCS with odd particle blocking (EV8-odd)

> SkP +isospin dependent pairing SLy4+isospin dependent pairing

Odd-even mass difference and isospin dependent pairing interaction

C. A. Bertulani,¹ H. F. Lü,² and H. Sagawa³

¹Department of Physics, Texas A&M University-Commerce, Commerce, Texas 75429, USA ²College of Science, China Agricultural University, Beijing, P.R.China ³Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, 965-8580 Fukushima, Japan (Dated: August 12, 2009)

PRC80, 027303(2009)

Deformed HF+BCS with blocking

EV8 (**P. Bonche, H. Flocard and P.H. Heenen**, CPC 171 (2005) 49)

1 - code has only 6,500 lines

2 - HF+BCS, 3-d coordinate mesh, axial symmetry, small continuum space

EV8 ODD:

3 – Blocking implemented by Bertsch (odd N) and Bertulani (odd Z).

A systematic study of pairing gaps varying the coupling strength C. Bertulani, Honglinag Lui, HS et al. (2011).

Average Gaps for low and high isospin

	Data set		Low isospin	High isospin	Difference
Neutrons	Z = 52	Exp	1.36	1.08	-0.28
		IS	1.52	1.41	-0.11
		IS+IV	1.40	1.19	-0.21
	Z = 78	Exp	1.13	0.99	-0.14
		IS	0.96	1.16	0.20
		IS+IV	0.87	0.91	0.04
	Z = 92	Exp	0.77	0.56	-0.21
		IS	0.90	0.80	-0.10
		IS+IV	0.70	0.55	-0.15
Protons	N = 76	Exp	1.19	0.93	-0.26
		IS	1.13	0.87	-0.26
		IS+IV	1.13	0.98	-0.15
	N = 102	Exp	0.96	0.63	-0.33
		IS	0.79	0.39	-0.40
		IS+IV	0.92	0.59	-0.33
	Z = 112	Exp	0.87	0.66	-0.21
		IS	0.58	0.61	0.03
		IS+IV	0.67	0.70	0.03

TABLE I:

Perspectives

- IS+IV pairing interaction looks promising for the fitting purpose.
- Extension to include $((N-Z)/A)^2$ term + Two-body Coulomb.

(M. Yamagami) (M. Yamagami and H. Nakada)

•Better EDF with pairing correlations: Pairing correlation properties should be isolated from the full functional.

• Are we much better than LDM for pairing gap residuals as a systematics? yes !

BCS superfluidity of Cooper pairs

- •Weakly interacting fermions
- •Correlation in p space (large coherence length)

(b)

BCS - BEC crossover $|v_{pair}| \rightarrow \infty$

BEC superfluidity of bound molecules

- Interacting
 "diatomic molecules"
- •Correlation in r space (small coherence length)

cf. BEC of molecules in ⁴⁰K

M. Greiner et al., Nature 426('04)537

not bound, but three body system is bound)

(note) recoil kinetic energy of the core nucleus

Hamitonian diagonalization with WS basis
 Continuum can be included by solving Green's functions
 Pauli blocking is properly taken into account.
 Application to ¹¹Li, ⁶He
 Important for dipole excitation

Two-particle wave functions (J=0 pairs)

Hamiltonian diagonalization

$$\Psi_{gs}(\mathbf{r},\mathbf{r}') = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \Psi_{nn'lj}^{(2)}(\mathbf{r},\mathbf{r}')$$

•Continuum: box discretization •Energy cut-off: $\epsilon_{nlj} + \epsilon_{n'lj} \leq \frac{A_c + 1}{A_c} E_{cut}$

Application to ¹¹Li, and ⁶He

¹¹Li, ⁶He: Typical Borromean nuclei

¹¹Li:
$$a_{nn} = -15$$
 fm, $E_{cut} = 30$ MeV, $R_{box} = 40$ fm
 $a_{n-9Li}(s) = -30 + (+12/-31) fm$
(Efimov states ?)
WS: adjusted to $p_{3/2}$ energy in ⁸Li & n-⁹Li elastic scattering
Parity-dependence \leftarrow to increase the s-wave component
⁶He: $a_{nn} = -15$ fm, $E_{cut} = 40$ MeV, $R_{box} = 30$ fm
 $a_{n-4He}(s) = 4.97 \pm 0.12 fm$

WS: adjusted to $n-\alpha$ elastic scattering

Coexistence of BCS-BEC like behaviour of Cooper Pair in ¹¹Li

$$\Psi^{(S=0)}(r_1, r_2) = \sum_L f_L(r, R) [Y_L(\hat{r}) Y_L(\hat{R})]^{(00)}$$

FIG. 3. The rms radius $\xi_{\rm rms}$ of the neutron Cooper pair in uniform matter, plotted as a function of the neutron density ρ/ρ_0 . The results for symmetric nuclear and neutron matter obtained with the Gogny D1 force are shown by the solid and dotted curves, respectively, while the results for symmetric nuclear and neutron matter with the G3RS force are shown by the diamond and square symbols, respectively. The average interneutron distance $d = \rho^{-1/3}$ is plotted with the dotted-dashed curve.

M. Matsuo, PRC73('06)044309

FIG. 2: (Color online) A two-dimensional (2D) plot for the two-particle density for the correlated pair (the upper panel) and for the uncorrelated $[(1p_{1/2})^2]$ configuration (the lower panel). It represents the probability distribution for the spin-up neutron when the spin-down neutron is at (z, x) = (3.4, 0) fm.

Dipole Excitations

Response to the dipole field:

$$B_k(E1) = 3 |\langle \Psi_{1^-}^k | \hat{D}_0 | \Psi_{gs} \rangle|^2$$

$$\hat{D}_M = -\frac{Ze}{A} \sum_{i=1,2} r_i Y_{1M}(\hat{r}_i)$$

Smearing:

$$B(E1) = \sum_{k} \frac{\Gamma}{\pi} \frac{B_k(E1)}{(E - E_k)^2 + \Gamma^2}$$

Geometry of Borromean nuclei

¹¹Li

⁶He

"experimental" mean opening angle

matter radius

K.Hagino and H. S.,PRC76('07)047302

C.A. Bertulani and M.S. Hussein, PRC76('07)051602

¹¹Li three-body break-up cross sections

K. Hagino, H.S., T.Nakamura and S.Shimoura, PRC80,031301(R)(2009)

Dalitz Plot of Triple coincidence experiments

Preliminary Exp. T. Nakamura et al., to be published

Nakamura-san's slides

preliminary

Double differential strength function for ¹¹Li full calculation $d^{2B(E1)} = \sum u u$

$$\frac{d^2 B(E1)}{de_1 de_2} = \sum_{l_1 j_1 l_2 j_2} |\langle [(e_1 j_1 l_1)(e_2 j_2 l_2)]^{(J=1)} |\hat{O}_{E1}| \Psi_{gs} \rangle|^2$$

Summary I

Application of three-body model to Borromean nuclei

θ

≻E1 response and geometry of Borromean nuclei

• strong pair correlations in di-neutrons

 \triangleright Di-neutron wave function for each *R*

- Concentration of a Cooper pair on the nuclear surface
- Relation to BCS-BEC crossover phenomenon

➢ n-n coincidence cross sections from 11Li* and 6He*

- importance of n-core interaction
- clear evidence of virtual s-state in n-9Li system
- correlation angle is determined experimentally.

Strong di-proton correlations is found in 17Ne
 Two body Coulomb interaction decreases 13% of di-proton correlations.

Recent publications:

• Di-neutron correlations in ¹¹Li and ⁶He

K.Hagino and H. S., PRC72('05) 044321.
K.H.agino and H. S., PRC75('07)021301(R).
K.Hagino, H. S., J. Carbonell, and P. Schuck, PRL99('07)022506.
H. Esbensen, K.Hagino, P. Mueller, and H. S., PRC76('07)024302.
K.Hagino and H. S., PRC76('07) 047302.

energy and angular n-n coincidence cross sections

K.Hagino, H.S. ,T. Nakamura and S. Shimoura, PRC80,031301 (R)(2009).

• Di-proton correlations in 17Ne

>T.Oishi, K. Hagino and HS, PRC82,024315 (2010).