Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial functions

Koichi Sato (RIKEN Nishina Center)

Nobuo Hinohara (RIKEN Nishina Center) Takashi Nakatsukasa (RIKEN Nishina Center) Masayuki Matsuo (Niigata Univ.) Kenichi Matsuyanagi (RIKEN Nishina Center/ YITP Kyoto Univ.)

Contents

Constrained HFB + Local QRPA method

Microscopic determination of inertial functions in the quadrupole collective Hamiltonian

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

Application to oblate-prolate shape coexistence (72Kr)

KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Application to shape transition in neutron-rich Cr isotopes around N=40

KS et al., in preparation

Microscopic approach to large-amplitude collective motion

A new method of determining the 5D quadrupole collective Hamiltonian: Constrained HFB + Local QRPA method

Beyond small-amplitude approximation

5D quadrupole collective Hamiltonian

(Generalized Bohr-Mottelson Hamiltonian) :

 $\beta = 0$

spherical

β

 $\gamma = 0$

prolate

"Constrained HFB+ Local QRPA method"

→ Hinohara-san's talk

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

- LQRPA inertial masses include the contribution from the time-odd components of the mean field unlike the cranking masses.
- * "CHFB+ LQRPA" method is based on the Adiabatic SCC method

Matsuo, Nakatsukasa, and Matsuyanagi, Prog.Theor. Phys. 103(2000), 959. N. Hinohara, et al, Prog. Theor. Phys. 117(2007) 451.

Constrained HFB + Local QRPA method
Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010)
KS & Hinohara, Nucl. Phys. A 849, 53 (2011)
Constrained HFB (CHFB) equation:

$$\delta \langle \phi(\beta, \gamma) | \hat{H}_{CHFB}(\beta, \gamma) | \phi(\beta, \gamma) \rangle = 0$$

 $\hat{H}_{CHFB}(\beta, \gamma) = \hat{H} - \sum_{\tau=n,p} \lambda(\beta, \gamma) \tilde{N}^{(\tau)} - \sum_{m=0,2} \mu_{2m}(\beta, \gamma) \hat{D}_{2m}^{(+)} \implies V(\beta, \gamma)$
Local QRPA (LQRPA) equations for vibration:
 $\delta \langle \phi(\beta, \gamma) | [\hat{H}_{CHFB}(\beta, \gamma), \hat{Q}^{i}(\beta, \gamma)] - \frac{1}{i} \hat{P}_{i}(\beta, \gamma) | \phi(\beta, \gamma) \rangle = 0, \quad (i = 1, 2)$
 $\delta \langle \phi(\beta, \gamma) | [\hat{H}_{CHFB}(\beta, \gamma), \frac{1}{i} \hat{P}_{i}(\beta, \gamma)] - C_{i}(\beta, \gamma) \hat{Q}^{i}(\beta, \gamma) | \phi(\beta, \gamma) \rangle = 0.$
 $D_{\beta\beta}(\beta, \gamma) D_{\beta\gamma}(\beta, \gamma) D_{\gamma\gamma}(\beta, \gamma)$
Local QRPA equations for rotation:

 $\delta \langle \phi(\beta,\gamma) | [\hat{H}_{\text{CHFB}}, \hat{\Psi}_k] - \frac{1}{i} (\mathcal{J}_k)^{-1} \hat{I}_k | \phi(\beta,\gamma) \rangle = 0$ $\langle \phi(\beta,\gamma) | [\hat{\Psi}_k(\beta,\gamma), \hat{I}_{k'}] | \phi(\beta,\gamma) \rangle = i \delta_{kk'}$

Derivation of vibrational masses $\hat{P}^{\alpha} = \frac{1}{i} \frac{\partial}{\partial q}_{\alpha}$ q_{2} Vibrational part of collective Hamiltonian $\sim q_1$ $\mathcal{H}_{\text{vib}} = \frac{1}{2} \sum \dot{q}_{\alpha}^2 \leftarrow \text{Scale transformation B=1}$ collective coordinates $dq_{\alpha} = \sum_{m=0,2} \frac{\partial q_{\alpha}}{\partial D_{2m}^{(+)}} dD_{2m}^{(+)}$ one-to-one correspondence In terms of quadrupole deformation $\frac{\partial \hat{D}_{2m}^{(+)}}{\partial q_{\alpha}} = \frac{\partial}{\partial q_{\alpha}} \left\langle \phi(\beta,\gamma) \left| \hat{D}_{2m}^{(+)} \right| \phi(\beta,\gamma) \right\rangle = \left\langle \phi(\beta,\gamma) \left[\hat{D}_{2m}^{(+)}, \frac{1}{i} \hat{P}^{\alpha}(\beta,\gamma) \right] \right| \phi(\beta,\gamma) \right\rangle$ LQRPA eq.

Criterion to choose 2 LQRPA modes:

Take a pair which gives the minimal $W = \beta^{-2} (D_{\beta\beta} D_{\gamma\gamma} - D_{\beta\gamma}^2)$

Classical Quadrupole Collective Hamiltonian:

$$T = \frac{1}{2} D_{\beta\beta} \dot{\beta}^2 + D_{\beta\gamma} \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma} \dot{\gamma}^2 + \sum_k \frac{1}{2} \mathcal{J}_k \omega_k^2$$

Pauli's prescription

 \mathbf{O}

0

Quantized quadrupole collective Hamiltonian): (General Bohr-Mottelson Hamiltonian)

$$\hat{T} = \frac{-\hbar^2}{2\sqrt{WR}} \left\{ \frac{1}{\beta^3} \left[\partial_\beta \left(\beta^3 \sqrt{\frac{R}{W}} D_{\gamma\gamma} \partial_\beta \right) - \partial_\beta \left(\beta^3 \sqrt{\frac{R}{W}} D_{\beta\gamma} \partial_\gamma \right) \right] \begin{array}{l} W = \beta^{-2} \left(D_{\beta\beta} D_{\gamma\gamma} - D_{\beta\gamma}^2 \right) \\ R = D_1 D_2 D_3 \end{array} \right. \\ \left. + \frac{1}{\sin 3\gamma} \left[-\partial_\gamma \left(\sqrt{\frac{R}{W}} \sin 3\gamma D_{\beta\gamma} \partial_\beta \right) + \partial_\gamma \left(\sqrt{\frac{R}{W}} \sin 3\gamma D_{\beta\beta} \partial_\gamma \right) \right\} + \sum_k \frac{\hat{I}_k^2}{2\mathcal{J}_k} \right]$$

Collective Schrodinger equation:

$$\{\hat{T}_{\rm vib} + \hat{T}_{\rm rot} + V\}\Psi_{\alpha IM}(\beta,\gamma,\Omega) = E_{\alpha I}\Psi_{\alpha IM}(\beta,\gamma,\Omega)$$

Collective wave function:

$$\Psi_{\alpha IM}(\beta,\gamma,\Omega) = \sum_{K=\text{even}} \Phi_{\alpha IK}(\beta,\gamma) \langle \Omega | IMK \rangle$$

Application to oblate-prolate shape coexistence

68,70,72Se: Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010) 72,74,76Kr: KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Model details:

Effective interaction: P+Q model including quadrupole-pairing int. Model space: two major shells (Nsh=3,4) Single-particle energy: modified oscillator Interaction strength: adjusted to reproduce Skyrme-HFB gaps and deformation property Collective wave functions squared x β^4

$$\beta^4 \sum_{K} |\Phi_{IKk}(\beta,\gamma)|^2$$
 72Kr

Normalization of w. f.:

$$\int d\beta d\gamma |\Phi_{\alpha I}(\beta,\gamma)|^2 |G(\beta,\gamma)|^{\frac{1}{2}} = 1$$
$$|G(\beta,\gamma)|^{\frac{1}{2}} d\beta d\gamma = 2\beta^4 \sqrt{W(\beta,\gamma)R(\beta,\gamma)} \sin 3\gamma d\beta d\gamma$$

Excitation energies and B(E2) values (72Kr)

Time-odd mean field contribution lowers excitation energies

Interband transitions become weaker as angular momentum increases.

Development of deformation in Cr isotopes around N ~ 40

Experimental 2⁺ excitation energies & $E(4_1^+)/E(2_1^+)$ ratios

Gade et al., Phys.Rev.C81 (2010) 051304(R),

onset of deformation?

Collective potential

[38

r40

Model details:

Eff. Int. : P+Q model including the quadrupole pairing

Model space: 2 major shells

Int. parameters:

62Cr adjusted to reproduce the Skyrme-HFB gaps and deformation

Others : simple A -dep. assumed

LQRPA vibrational masses:

LQRPA rotational Mol

30

Application to Cr isotopes

Summary

- We have proposed a method (CHFB+LQRPA method) for determining the inertial functions in the 5D quadrupole collective Hamiltonian.
- LQRPA inertial masses contain the contribution from the time-odd component of the mean field, which increases the inertial masses.

Application to shape mixing dynamics
 oblate-prolate shape coexistence in 72Kr
 shape transition in neutron-rich Cr isotopes around N=40.
 role of rotational motion

Future work

2D CHFB +LQPRA method with Skyrme EDF