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Continuum Mechanics: what is it?	
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An attempt to describe a complex many-body system in terms of a few collective 
variables -- density and current -- without reference to the underlying atomic 
structure.  A classical example is  “Elasticity Theory”.	
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Can continuum mechanics be applied to 
quantum mechanical systems?	


YES!	


Heisenberg Equations of Motion:	
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" # $ ˆ n (r, t)Hamiltonian:	


  

! 

"n(r, t)
"t

Derivative of   
particle density

! " # 
= #$ % j(r, t)

Current 
density

! " #   

  

! 

"j(r, t)
"t

= #$ %
! 
P (r,t)

Stress
tensor

" # $  - n(r, t) $ V0(r) +V1(r,t)[ ]

Local conservation 
of particle number	


Local conservation 
of momentum	


A unique functional of the 
current density (by Runge-
Gross theorem)	


At variance with classical continuum mechanics quantum 
continuum mechanics aspires to be valid at all length scales.	




Continuum mechanics in the linear 
response regime	
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“Linear response regime” means that 
we are in a non-stationary state that is 
“close” to the ground-state, e.g. 	


! 

"n0(t) = "0 e
#iE0t + $ "n e

#iEnt

$ <<1

The displacement field associated with this excitation is the 
expectation value of the current in Ψn0 divided by the ground-state 
density n0 and integrated over time	
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Continuum mechanics in the linear 
response regime - continued	


Excitation energies in linear continuum mechanics are obtained by 
solving a linear equation of motion for the Fourier transform of the 
displacement field  u(r,ω). The existence of a non-vanishing, 
normalizable solutions at frequency ω means that hω is an 
excitation energy.	
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Excitations	

Displacement 

fields	
 Displacements associated with 
different excitation need not be 
linearly independent.   Different 
excited states can have the same 
displacement.	


!	
 WARNING	




Make a change of coordinates to the “comoving frame” -- an accelerated 
reference frame that moves with the electron liquid so that the density is 
constant and the current density  is zero everywhere. 	


Continuum Mechanics – Lagrangian formulation	
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Hamiltonian in 
Lagrangian frame	
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Generalized force	


Wave function in 
Lagrangian frame	




Assume that the wave function in the Lagrangian frame is 
time-independent -  the time evolution of the system is then 
entirely governed by the changing metrics. We call this 
assumption the “elastic approximation”.  This gives...	


Continuum Mechanics: the Elastic Approximation	


! 

r1,..., rN "0[u] = "0(r1 #u(r1),...,  rN #u(rN ))g#1/ 4 (r1)... g
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Ψ0[u] is the deformed ground state wave function:	


The elastic approximation is expected to work best for highly collective 
excitations, and it is exact for (1) High-frequency limit  (2) One-electron 
systems.  Notice that this is an anti-adiabatic approximation.	
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The elastic equation of motion:	




An elementary derivation of the elastic 
equation of motion	


Start from the equation for the linear response of the current:	
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Inverting Eq. (1) to first order we get	
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The one-particle case	
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Inserting into the Schrödinger equation	
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Linearizing about the ground-state  and Fourier-transforming we get	
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Since the right hand side does not depend on frequency, we conclude that it 
is given exactly by the high-frequency limit of the linear response theory. 	


Polar representation of the wave function	




The homogeneous electron gas 	
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The elastic equation of motion: discussion	


2. The eigenvalue problem is hermitian and yields a complete 
set of orthonormal eigenfunction.  Orthonormality defined with 
respect to a modified scalar product with weight n0(r). 	
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u"# (r) $u"' (r)n0(r)dr = %""'

3. The positivity of the eigenvalues (=excitation energies) is 
guaranteed by the stability of the ground-state	


4. All the excitations of one-particle systems are exactly 
reproduced.	


1. The linear functional F[u] is calculable from the exact one- 
and two body density matrices of the ground-state. These can 
be obtained from Quantum Monte Carlo calculations.	




The sum rule 	

Let uλ(r) be a solution of the elastic eigenvalue problem with 
eigenvalue  ωλ

2.  The following relation exists between ωλ
2 and 

the exact excitation energies: 	
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Exact excitation 
energies	


Elastic QCM	

A group of levels may collapse into one	

but the spectral weight is preserved	

within each group! 	


rigorously satisfied 
in 1D systems	




Elastic equation of motion for 1-dimensional 
systems	
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a fourth-order integro-differential equation	


From Quantum 
Monte Carlo	




A.  Linear Harmonic Oscillator 	
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Eigenfunctions:	


This equation can be solved analytically by expanding u(x) in a power series of x and 
requiring that the series terminates after a finite number of terms (thus ensuring zero 
current at infinity).	


B. Hydrogen atom (l=0)	
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Two interacting particles in a 1D harmonic 
potential – Spin singlet	
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Evolution of exact excitation energies	
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Exact excitation energies (lines) vs 
QCM energies (dots)	
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Strong Correlation Limit	
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States with the same n+m and the same parity of m have identical 
displacement fields. At the QCM level they collapse into a single 
mode with energy	
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Quantum Continuum Mechanics and DFT	

1. Replace the physical system by a non-interacting system 
subjected to the static Kohn-Sham potential VKS0(r). 	
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2. Add to the external force the internally generated time-
dependent Hartree+exchange-correlation forces	
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3. Elastic approximation is applied only to the non-interacting 
kinetic response.  Exchange-correlation forces can be retarded.  	




Kohn-Sham response in the elastic 
approximation: the Gould-Dobson approach	

!! 2n0 (r)uµ (r) = Fs,µ (r) = ! K̂µ"u" (r)
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" ! [#µ#"VKS,0 (r)] u" (r)
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Strong feature: Minimum excitation energy in elastic 
approximation > Kohn-Sham HOMO-LUMO gap  	


!KS (r, r',")

From χKS, one calculates the RPA correlation energy as a functional 
of density.  This is a sophisticated functional, which captures van 

der Waals forces between widely separated parts of the system.	


(Kohn-Sham response function)	




Gould-Dobson approach – Energy of two 
parallel metallic slabs	
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Planned applications	
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Periodic system: Replace bands of 
single-particle excitations by 

bands of collective modes	


Luttinger liquid in a harmonic trap	
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Two-dimensional Mott-Hubbard electrons in an 
artificial honeycomb lattice	

A. Singha et al. Science 332, 1176 (2011)	


Ordinary 
cyclotron 

mode	


Mott-Hubbard	

mode	


Generalization of QCM to systems in magnetic field:	

Pittalis, Tokatly and Vignale, 2011	




QCM in a Magnetic Field	

S. Pittalis, G. V. and I. V. Tokatly, arXiv 1109.3644	


  Current density does not vanish at equilibrium: j0≠0.	


  Elastic approximation formulated in a generalized co-
moving frame in which n=n0 and j=j0 at all times	


	

  Relation between current and displacement changes to���
	


	

  Time derivative is replaced by convective derivative���
	


  Lorentz force term+ subtle changes to the kinetic energy	


j= j0 + n0 !u +!" (j0 "u)

Dt = !t + v0 "#

Dt
2u+Dt u!B0 + (u "#)#V0 + v0 ! (u "#)B0 = n0

$1Fel $#V1



Conclusions and speculations I	


1.  Quantum Continuum Mechanics in the elastic approximation 
is a direct extension of the collective approximation  for the 
homogeneous electron gas to inhomogeneous quantum 
systems. We expect it to be useful for	


  Nonlocal refinement of the plasmon pole approximation in	

    GW calculations	


  Theory of dispersive Van derWaals forces, especially in	

    complex geometries (Dobson) 	


    Dynamics in the strongly correlated regime (e.g., collective  	

    modes in the quantum Hall regime) 	




Conclusions and speculations II	

2.  As a byproduct we got an explicit analytic representation of 

the exact xc functional in the high-frequency (anti-adiabatic) 
limit [Nazarov et al., PRB 81, 245101 (2010)] 	


3.  Time-dependent DFT offers a natural way to improve upon 
the elastic approximation	
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