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Continuum Mechanics: what is it?	
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An attempt to describe a complex many-body system in terms of a few collective 
variables -- density and current -- without reference to the underlying atomic 
structure.  A classical example is  “Elasticity Theory”.	
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Can continuum mechanics be applied to 
quantum mechanical systems?	



YES!	



Heisenberg Equations of Motion:	
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" # $ ˆ n (r, t)Hamiltonian:	
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Local conservation 
of particle number	



Local conservation 
of momentum	



A unique functional of the 
current density (by Runge-
Gross theorem)	



At variance with classical continuum mechanics quantum 
continuum mechanics aspires to be valid at all length scales.	





Continuum mechanics in the linear 
response regime	
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“Linear response regime” means that 
we are in a non-stationary state that is 
“close” to the ground-state, e.g. 	
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The displacement field associated with this excitation is the 
expectation value of the current in Ψn0 divided by the ground-state 
density n0 and integrated over time	
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Continuum mechanics in the linear 
response regime - continued	



Excitation energies in linear continuum mechanics are obtained by 
solving a linear equation of motion for the Fourier transform of the 
displacement field  u(r,ω). The existence of a non-vanishing, 
normalizable solutions at frequency ω means that hω is an 
excitation energy.	
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Excitations	


Displacement 

fields	

 Displacements associated with 
different excitation need not be 
linearly independent.   Different 
excited states can have the same 
displacement.	



!	

 WARNING	





Make a change of coordinates to the “comoving frame” -- an accelerated 
reference frame that moves with the electron liquid so that the density is 
constant and the current density  is zero everywhere. 	



Continuum Mechanics – Lagrangian formulation	
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Curvilinear coordinates	
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Hamiltonian in 
Lagrangian frame	
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Wave function in 
Lagrangian frame	





Assume that the wave function in the Lagrangian frame is 
time-independent -  the time evolution of the system is then 
entirely governed by the changing metrics. We call this 
assumption the “elastic approximation”.  This gives...	



Continuum Mechanics: the Elastic Approximation	
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Ψ0[u] is the deformed ground state wave function:	



The elastic approximation is expected to work best for highly collective 
excitations, and it is exact for (1) High-frequency limit  (2) One-electron 
systems.  Notice that this is an anti-adiabatic approximation.	
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The elastic equation of motion:	





An elementary derivation of the elastic 
equation of motion	



Start from the equation for the linear response of the current:	
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Inverting Eq. (1) to first order we get	
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The one-particle case	
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Inserting into the Schrödinger equation	
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Linearizing about the ground-state  and Fourier-transforming we get	
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Since the right hand side does not depend on frequency, we conclude that it 
is given exactly by the high-frequency limit of the linear response theory. 	



Polar representation of the wave function	





The homogeneous electron gas 	
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Multiparticle 
excitations	



Multiparticle 
excitations	
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The elastic equation of motion: discussion	



2. The eigenvalue problem is hermitian and yields a complete 
set of orthonormal eigenfunction.  Orthonormality defined with 
respect to a modified scalar product with weight n0(r). 	
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3. The positivity of the eigenvalues (=excitation energies) is 
guaranteed by the stability of the ground-state	



4. All the excitations of one-particle systems are exactly 
reproduced.	



1. The linear functional F[u] is calculable from the exact one- 
and two body density matrices of the ground-state. These can 
be obtained from Quantum Monte Carlo calculations.	





The sum rule 	


Let uλ(r) be a solution of the elastic eigenvalue problem with 
eigenvalue  ωλ

2.  The following relation exists between ωλ
2 and 

the exact excitation energies: 	
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Exact excitation 
energies	



Elastic QCM	


A group of levels may collapse into one	


but the spectral weight is preserved	


within each group! 	



rigorously satisfied 
in 1D systems	





Elastic equation of motion for 1-dimensional 
systems	
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a fourth-order integro-differential equation	



From Quantum 
Monte Carlo	





A.  Linear Harmonic Oscillator 	
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Eigenfunctions:	



This equation can be solved analytically by expanding u(x) in a power series of x and 
requiring that the series terminates after a finite number of terms (thus ensuring zero 
current at infinity).	



B. Hydrogen atom (l=0)	
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Two interacting particles in a 1D harmonic 
potential – Spin singlet	
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Evolution of exact excitation energies	
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Exact excitation energies (lines) vs 
QCM energies (dots)	
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Strong Correlation Limit	
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States with the same n+m and the same parity of m have identical 
displacement fields. At the QCM level they collapse into a single 
mode with energy	
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Quantum Continuum Mechanics and DFT	


1. Replace the physical system by a non-interacting system 
subjected to the static Kohn-Sham potential VKS0(r). 	
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2. Add to the external force the internally generated time-
dependent Hartree+exchange-correlation forces	
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3. Elastic approximation is applied only to the non-interacting 
kinetic response.  Exchange-correlation forces can be retarded.  	





Kohn-Sham response in the elastic 
approximation: the Gould-Dobson approach	
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Strong feature: Minimum excitation energy in elastic 
approximation > Kohn-Sham HOMO-LUMO gap  	



!KS (r, r',")

From χKS, one calculates the RPA correlation energy as a functional 
of density.  This is a sophisticated functional, which captures van 

der Waals forces between widely separated parts of the system.	



(Kohn-Sham response function)	





Gould-Dobson approach – Energy of two 
parallel metallic slabs	
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Planned applications	
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Periodic system: Replace bands of 
single-particle excitations by 

bands of collective modes	



Luttinger liquid in a harmonic trap	
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Two-dimensional Mott-Hubbard electrons in an 
artificial honeycomb lattice	


A. Singha et al. Science 332, 1176 (2011)	



Ordinary 
cyclotron 

mode	



Mott-Hubbard	


mode	



Generalization of QCM to systems in magnetic field:	


Pittalis, Tokatly and Vignale, 2011	





QCM in a Magnetic Field	


S. Pittalis, G. V. and I. V. Tokatly, arXiv 1109.3644	



  Current density does not vanish at equilibrium: j0≠0.	



  Elastic approximation formulated in a generalized co-
moving frame in which n=n0 and j=j0 at all times	



	


  Relation between current and displacement changes to���
	



	


  Time derivative is replaced by convective derivative���
	



  Lorentz force term+ subtle changes to the kinetic energy	
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Conclusions and speculations I	



1.  Quantum Continuum Mechanics in the elastic approximation 
is a direct extension of the collective approximation  for the 
homogeneous electron gas to inhomogeneous quantum 
systems. We expect it to be useful for	



  Nonlocal refinement of the plasmon pole approximation in	


    GW calculations	



  Theory of dispersive Van derWaals forces, especially in	


    complex geometries (Dobson) 	



    Dynamics in the strongly correlated regime (e.g., collective  	


    modes in the quantum Hall regime) 	





Conclusions and speculations II	


2.  As a byproduct we got an explicit analytic representation of 

the exact xc functional in the high-frequency (anti-adiabatic) 
limit [Nazarov et al., PRB 81, 245101 (2010)] 	



3.  Time-dependent DFT offers a natural way to improve upon 
the elastic approximation	
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