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Continuum Mechanics: what 1s it?

An attempt to describe a complex many-body system in terms of a few collective
variables -- density and current -- without reference to the underlying atomic
structure. A classical example is “Elasticity Theory .
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Can continuum mechanics be applied to
quantum mechanical systems?

YES!
Hamiltonian:  H(t)= T + W + 'V, + f dr V,(r,t) n(r,t)
Kinetic Interaction External External
Energy Energy static potential time-dependent

potential (small)

Heisenberg Equations of Motion:

on(r,t)

Local conservation e -V - jr,1t) A unique fur}ctlonal of the
of particle number e dcuT?tnt current density (by Runge-
paticle density e Gross theorem)
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At variance with classical continuum mechanics quantum
continuum mechanics aspires to be valid at all length scales.




Continuum mechanics in the linear
response regime

P By == “Linear response regime’ means that
we are in a non-stationary state that 1s
o 11 77
v, E, close” to the ground-state, e.g.
—iEt —iE,t
W, E, W (1) =W, )e™ + AW e
A<<l1
lPO’ EO

The displacement field associated with this excitation is the
expectation value of the current in W, divided by the ground-state
density n, and integrated over time
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Continuum mechanics in the linear
response regime - continued

Excitation energies in linear continuum mechanics are obtained by
solving a linear equation of motion for the Fourier transform of the
displacement field u(r,w). The existence of a non-vanishing,
normalizable solutions at frequency w means that Aw 1s an
excitation energy.
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Continuum Mechanics — Lagrangian formulation
1. V. Tokatly, PRB 71, 165104 & 165105 (2005); PRB 75, 125105 (2007)

Make a change of coordinates to the “comoving frame” -- an accelerated
reference frame that moves with the electron liquid so that the density is
constant and the current density is zero everywhere.
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Continuum Mechanics: the Elastic Approximation

Assume that the wave function in the Lagrangian frame is
time-independent - the time evolution of the system is then
entirely governed by the changing metrics. We call this
assumption the “elastic approximation”. This gives...

The elastic equation of motion:
mii = F[u]-VV
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Flu] = -
n, ou n, ou

W,[u] 1s the deformed ground state wave function:

(F)seees Ty | Wy [0]) = Wy (x, —0(r)), ..., Ty —u(ry,))g ™ (1)... g7 (1)

The elastic approximation is expected to work best for highly collective
excitations, and it is exact for (1) High-frequency limit (2) One-electron
systems. Notice that this is an anti-adiabatic approximation.




An elementary derivation of the elastic
equation of motion

Start from the equation for the linear response of the current:

J(O()) = n0A1 ((U) + K((U) ) A1 ((1))
K() = ((§5))), —=—3

Go the high frequency limit: :
M= —<‘I’8 [[H] ,j]\‘ljol

' 5 =
First spectral moment : y f do wImK(w)
Inverting Eq. (1) to first order we get
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The one-particle case

Polar representation of the wave function

Y(r,t) =+/n(r,t) e V(r,t) = li(r,t)

Inserting into the Schrodinger equation

() | Vv
I P — —2m+V0(r)+Vl(r,t) Y(r,t)

Linearizing about the ground-state and Fourier-transforming we get

;. 1 (V2 V2fn, |V (nou)
— u(r,t)——V-zﬁ . . \/rTO

Since the right hand side does not depend on frequency, we conclude that it
is given exactly by the high-frequency limit of the linear response theory.




The homogeneous electron gas
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The elastic equation of motion: discussion

1. The linear functional F[u] is calculable from the exact one-
and two body density matrices of the ground-state. These can
be obtained from Quantum Monte Carlo calculations.

2. The eigenvalue problem is hermitian and yields a complete
set of orthonormal eigenfunction. Orthonormality defined with

respect to a modified scalar product with weight n,(1).
fuk(r) ‘u, (r)n,(r)dr =0,

3. The positivity of the eigenvalues (=excitation energies) 1s
guaranteed by the stability of the ground-state

4. All the excitations of one-particle systems are exactly
reproduced.



The sum rule

Let u, (r) be a solution of the elastic eigenvalue problem with
eigenvalue m,%. The following relation exists between w,* and
the exact excitation energies:
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n

2
2\ f dru, () jo, ) 2
Ao ¢ i r)=(¥ |jr)|¥
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1 rigorously satisfied

f-sum rule f = in 1D systems
n
Exact excitation
energies

A group of levels may collapse into one
. Elastic QCM | pyt the spectral weight is preserved
within each group!




Elastic equation of motion for 1-dimensional
systems

(37-(')11,), ~ (nOuII)II
n, 4n,

+ fdx’K(x,x')[u(x)— “(x')]

mit=-uV, +

a fourth-order integro-differential equation

1 n
To(0) = 28,3, P X, = "Oix)

One-particle
density matrix From Quantum
/ Monte Carlo

K(x,x")= p,(x,x)w"(x - x")

Two-particle Second derivative
density matrix  of interaction



A. Linear Harmonic Oscillator

4 3 2 2
1 dl:—xd—l31+(x2—2)d—lzl+ 3 [1-2 =0
4 dx dx dx dx W,

This equation can be solved analytically by expanding u(x) in a power series of x and
requiring that the series terminates after a finite number of terms (thus ensuring zero
current at infinity).

Eigenvalues: W, =*nw,

Eigenfunctions: u, (.X) = I{n_1 (.X)
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Two interacting particles in a 1D harmonic
potential — Spin singlet
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Evolution of exact excitation energies
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Exact excitation energies (lines) vs
QCM energies (dots)
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Strong Correlation Limit
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Quantum Continuum Mechanics and DFT

1. Replace the physical system by a non-interacting system
subjected to the static Kohn-Sham potential V¢,(1).

2. Add to the external force the internally generated time-
dependent Hartree+exchange-correlation forces

[u]-VV,

mu=F[u]+F,

XC

3. Elastic approximation 1s applied only to the non-interacting
kinetic response. Exchange-correlation forces can be retarded.

1 (W, [l + Vi [Wo,[ul), 1 SE,,[u]

n, ou n, ou

exchange-correlation
stress tensor

K [u]=-

1 E ngc,l; (r,ws

n,(r) < ar,
—

equilibrium
density

Adiabajtéc LDA

Fxc,i (r’ CU) = r_viVxC,O (r, CUS B




Kohn-Sham response in the elastic
approximation: the Gould-Dobson approach

0’y (Ou, () = F, (1) ==Y K,,,1, (1) = Y[9,0,Vis o (0)] 1, (r)

!

Xgs (XX, 0)
(Kohn-Sham response function)

Strong feature: Minimum excitation energy in elastic
approximation > Kohn-Sham HOMO-LUMO gap

From %, one calculates the RPA correlation energy as a functional
of density. This 1s a sophisticated functional, which captures van
der Waals forces between widely separated parts of the system.



Gould-Dobson approach — Energy of two
parallel metallic slabs
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FIG. 1. D) graph for r« = 1.25, s = 3. RPA data from [24].
Inset data shows the vdW dominated region.

CM LDA dRPA| CM LDA dRPA
r« =125, s=3 re =2.07,s=5

Dg 3.33 3.38 3.32f| 1.57 1.56  1.62+0.1§

€ 0.74 0.53 0.79f| 1.78 1.72  1.85+0.1§

C..| 0.51 0.45 0.55%| 1.31 1.38  1.32+0.1§

TABLE I. Groundstate properties of two slab systems under
different approximations. Energies are in mHa/e™ and dis-
tance are in Bohr radii. I from Ref. 24, § is guessed from
Refs. 20 and 23 taking into account estimated error bars.



Planned applications
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Two-dimensional Mott-Hubbard electrons in an

artificial honeycomb lattice
A. Singha et al. Science 332, 1176 (2011)
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Generalization of QCM to systems 1in magnetic field:
Pittalis, Tokatly and Vignale, 2011



QCM 1n a Magnetic Field

S. Pittalis, G. V. and 1. V. Tokatly, arXiv 1109.3644

= Current density does not vanish at equilibrium: j,20.

= FElastic approximation formulated in a generalized co-
moving frame in which n=n, and j=j, at all times

= Relation between current and displacement changes to
j=J,+n,u+Vx(,xu)

* Time derivative is replaced by convective derivative
D =0 +v,"V

* Lorentz force term+ subtle changes to the kinetic energy

Du+DuxB,+(u-V)VV, +v,x(u-V)B, =n,'F, -VV,




Conclusions and speculations I

. Quantum Continuum Mechanics in the elastic approximation
1s a direct extension of the collective approximation for the
homogeneous electron gas to inhomogeneous quantum
systems. We expect it to be useful for

Theory of dispersive Van derWaals forces, especially in
complex geometries (Dobson)

Nonlocal refinement of the plasmon pole approximation in
GW calculations

Dynamics in the strongly correlated regime (e.g., collective
modes in the quantum Hall regime)



Conclusions and speculations II

2. As a byproduct we got an explicit analytic representation of
the exact xc functional in the high-frequency (anti-adiabatic)
limit [Nazarov et al., PRB 81, 245101 (2010)]

Exc[u]=%fdr{Tfo[4u u,, —0,u,0 u ]—nou u,0,0,V }

uava uavia uvu- v’ xc

+ifdrfdrv[uu(r)_uv(r)]l(w(r,r')[uu(r')—Mv(r')]

1 - A
T (r) = %(auav + <9Mav)[,01 (r,r') - p, (r,r")]

K (r,r") = ny(r)n, (r")[ g(r,r')-1]9,9,V.(Ir-r'l)

3. Time-dependent DFT offers a natural way to improve upon
the elastic approximation



