

Symmetry conserving configuration mixing approaches with shape and pairing fluctuations

J. Luis Egido

in collaboration with Tomás R. Rodriguez and Nuria López-Vaquero

YIPQS Long-term workshop Dynamics and Correlations in Exotic Nuclei (DCEN2011) 20th September - 28th October, 2011 Yukawa Institute for Theoretical Physics, Kyoto, Japan

1.- Theory

- A.- Mean Field based approaches
 - The Hartree-Fock-Bogoliubov (HFB) approach and the symmetry breaking mechanism.
 - Symmetry Conserving mean field theory.
 - **B.-** Symmetry conserving configuration mixing approaches
 - The generation of configurations in the Generator Coordinate Method:
 - -- The β - γ coordinates (triaxial shape fluctuations)
 - -- The β - Δ_{π} - Δ_{ν} coordinates (shape and pairing fluctuations)

Outline of the talk (2)

2.- Applications

- A.- The ⁵⁴Cr nucleus. (Ingredients: VAP-PN, AXIAL-AMP and β coordinate)
- B.- The ²⁴Mg and the ¹²⁶Xe nuclei. (Ingredients: VAP-PN, TRIAXIAL-AMP and β-γ coordinates)
- C.- Pairing vibrations around N=30. (Ingredients: VAP-PN, AXIAL-AMP, β and Δ_{π} - Δ_{v} coordinates)

Mean Field approach: The HFB theory and the symmetry breaking mechanism

Let $\{c_i, c_i^{\dagger}\}$ be the particle operators which define the harmonic oscillator basis, and

$$\alpha_{\mu} = \sum_{i} U_{i\mu}^* c_i + \sum_{i} V_{i\mu}^* c_i^{\dagger},$$

the most general Bogoliubov transformation.

We are looking for the coefficients $U {\rm and} \ V$ such that the product manybody wave function

$$|\varphi\rangle = \alpha_M \dots \alpha_1 |-\rangle,$$

minimizes the expression

$$\delta\langle\varphi|\hat{H} - \lambda\hat{N}|\varphi\rangle = 0,$$

the parameter λ being determined by the constraint

$$\langle \varphi | \hat{N} | \varphi \rangle = N,$$

with N the number of particles of our system.

Projected Mean Field Theories

To recover the symmetries we use the many-body w.f

$$|\Psi\rangle=\hat{P}^I_M\dots\hat{P}^N\hat{P}^Z|\varphi\rangle$$

with \hat{P} a projector on the corresponding symmetry.

***** If $|\varphi\rangle$ is determined by minimizing $E = \frac{\langle \varphi | \hat{H} | \varphi \rangle}{\langle \varphi | \varphi \rangle}$.

we refer to it as projection after the variation (PAV).

****** If $|\varphi\rangle$ is determined by minimizing $E_P = \frac{\langle \varphi | \hat{H} \hat{P}_M^I ... \hat{P}^N \hat{P}^Z | \varphi \rangle}{\langle \varphi | \hat{P}_M^I ... \hat{P}^N \hat{P}^Z | \varphi \rangle}$. we refer to it as variation after projection (VAP).

IMPORTANT: $| \varphi \rangle$ is always a product wave function.

Symmetry conserving Configuration mixing approach

In this case the the Ansatz is based in the GCM :

$$\Psi_{\sigma I}^{N,Z} \rangle = \int dq \; f_{\sigma I}^{N,Z}(q) \; \hat{P}_M^I ... \hat{P}^N \hat{P}^Z \left| \varphi(q) \right\rangle,$$

where $f_{\sigma I}^{N,Z}(q)$ are the collective wave functions solution of the Hill-Wheeler equation

$$\int dq' \,\mathcal{H}_{I}^{N,Z}(q,q') \,f_{\sigma I}^{N,Z}(q') = E_{\sigma I}^{N,Z} \int dq' \,\mathcal{N}_{I}^{N,Z}(q,q') \,f_{\sigma I}^{N,Z}(q'),$$

with the projected norm and Hamiltonian kernels

$$\mathcal{N}_{I}^{N,Z}(q,q') = \langle \varphi(q) | \hat{P}_{M}^{I} ... \hat{P}^{N} \hat{P}^{Z} | \varphi(q') \rangle ,$$

$$\mathcal{H}_{I}^{N,Z}(q,q') = \langle \varphi(q) | H \hat{P}_{M}^{I} ... \hat{P}^{N} \hat{P}^{Z} | \varphi(q') \rangle .$$

The calculations: 2 steps

1.- We generate a large set of highly correlated HFB wave functions $|\varphi(q_i)\rangle$ by minimizing

$$E^{N}(q_{i}) = \frac{\langle \varphi(q_{i}) | (\hat{H} - \lambda_{i} \hat{Q}) \hat{P}^{N} | \varphi(q_{i}) \rangle}{\langle \varphi(q_{i}) | \hat{P}^{N} | \varphi(q_{i}) \rangle}$$

with the corresponding constraint on \hat{Q} , i.e. in the PN-VAP approach.

2.- We perform configuration mixing calculations

$$|\Psi^{N,J}\rangle = \int (f(q)) \hat{P}^N \hat{P}^J |\varphi(q)\rangle \, dq,$$

diagonalizing the Hill-Wheeler equation.

We can also have a look on the diagonal matrix elements projected onto good angular momentum and particle number, i.e.,

$$E^{N,J}(q_i) = \frac{\langle \varphi(q_i) | \hat{H} \hat{P}^N \hat{P}^J | \varphi(q_i) \rangle}{\langle \varphi(q_i) | \hat{P}^N \hat{P}^J | \varphi(q_i) \rangle}$$

Interaction.- In the calculations the Gogny force with the D1S parametrization has been used. All exchange terms of the force are considered to avoid divergences associated with the projections.

Configuration Space.- We take into account a relatively large number of major harmonic oscillator shells.

Effective charges.- NO need of effective charges in the calculations of electromagnetic properties.

The beta (q₂₀) degree of freedom in the N=30 region

Potential Energy curves in the PN-VAP approach

Examples of angular momentum PES and configuration mixing solutions

martes 20 de septiembre de 2011

Particle number and Triaxial Angular Momentum Projection The nucleus ²⁴Mg

See also the variations of M. Bender and P.H. Heenen, Phys. Rev. C 78, 024309(2008) (Skyrme, LN + PNAMP) J.M. Yao, J. Meng, P. Ring, and D. Vretener, Phys. Rev. C 81, 044311(2010) (Relativistic, BCS+AMP)

The solution of the PN-VAP in the (β,γ) provides

Experiment

Projection of a mean field wave function $|\phi(\beta,\gamma)\rangle$

The projected wave function is given by

$$|IM; N, Z, \beta \gamma \rangle = \sum_{K} g_{K}^{I} P_{MK}^{I} P^{N} P^{Z} |\Phi(\beta, \gamma)\rangle \equiv \sum_{K} g_{K}^{I} |IMK; N, Z, \beta \gamma \rangle$$

with the projectors

$$P_{MK}^{I} = \frac{2I+1}{8\pi^2} \int \mathrm{d}\Omega \mathcal{D}_{MK}^{I*}(\Omega) \hat{R}(\Omega) \qquad P^{N} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i\varphi(\hat{N}-N)} d\varphi$$

Variation with respect to the coefficients g_K^I provides

$$\sum_{KK'} \left(H^{I}_{KK'}(\beta\gamma,\beta\gamma) - E^{I,\sigma} N^{I}_{KK'}(\beta\gamma,\beta\gamma) \right) g^{I,\sigma}_{K'} = 0$$

with the matrix elements

$$O_{KK'}^{I}(\beta\gamma,\beta\gamma) = \langle \Phi(\beta\gamma) | \hat{O}P_{KK'}^{I}P^{N}P^{Z} | \Phi(\beta\gamma) \rangle$$

= $\frac{2I+1}{8\pi^{2}} \int d\Omega \mathcal{D}_{KK'}^{I*}(\Omega) \langle \Phi(\beta\gamma) | \hat{O}\hat{R}(\Omega)P^{N}P^{Z} | \Phi(\beta\gamma) \rangle$

martes 20 de septiembre de 2011

Projected energies in the (β, γ) plane

Projected Generator Coordinate Theories

Ansatz:
$$|IM; NZ\sigma\rangle = \sum_{K\beta\gamma} f_{K\beta\gamma}^{I;NZ,\sigma} |IMK; NZ; \beta\gamma\rangle$$

with: $|IMK;NZ;\beta\gamma\rangle = \frac{2I+1}{8\pi^2} \int \mathcal{D}_{MK}^{I*}(\Omega)\hat{R}(\Omega)P^N P^Z |\Phi(\beta,\gamma)\rangle d\Omega$

The variational principle provides the HW equation:

$$\sum_{K'\beta'\gamma'} \left(\mathcal{H}_{K\beta\gamma K'\beta'\gamma'}^{I;NZ} - E^{I;NZ;\sigma} \mathcal{N}_{K\beta\gamma K'\beta'\gamma'}^{I;NZ} \right) f_{K'\beta'\gamma'}^{I;NZ;\sigma} = 0$$

with:
$$\mathcal{O}_{K\beta\gamma K'\beta'\gamma'}^{I;NZ} \equiv \langle IMK;NZ;\beta\gamma|\hat{O}|IMK';NZ;\beta'\gamma'\rangle = \frac{2I+1}{8\pi^2} \int \mathcal{D}_{KK'}^{I*}(\Omega) \langle \Phi(\beta,\gamma)|\hat{O}\hat{R}(\Omega)P^NP^Z|\Phi(\beta',\gamma')\rangle d\Omega$$

Energy contour plots in the (β,γ) plane

 $|IM;NZ;\beta\gamma\rangle = \sum_{K} g_{K}|IMK,NZ;\beta\gamma\rangle$

 $|IMK;NZ;\beta\gamma\rangle = P^{I}_{MK}P^{N}P^{Z}|\Phi(\beta,\gamma)\rangle$

Choice of sextant and grid in (β,γ) plane

Projected energies in the (β, γ) plane

²⁴Mg

T. R. Rodriguez and J.L.E., Phys. Rev. C81, 064323(2010)

Collective wave functions in the (β, γ) plane

The need of triaxiality:

¹²⁶Xe as an example

Axial calculations ¹²⁶Xe

\checkmark AXIAL calculations

 \checkmark Two minima almost degenerated in the potential energy surface

 \checkmark The collective wave function of the ground state is distributed in these two minima (shape coexistence)

✓ TRIAXIAL calculations?

Axial calculations ¹²⁶Xe

\checkmark AXIAL calculations

 \checkmark Two minima almost degenerated in the potential energy surface

 \checkmark The collective wave function of the ground state is distributed in these two minima (shape coexistence)

✓ TRIAXIAL calculations?

Triaxial calculations ¹²⁶Xe in a reduced configuration space (seven shells)

T.R.Rodriguez and J.L. Egido, Journal of Physics: Conference Series (2011)

✓ TRIAXIAL calculations

 \checkmark One single minimum in $\gamma {=} 30^\circ$ and saddle points in the axial configurations

 \checkmark PES very soft in the γ degree of freedom

✓ After GCM, there is not coexistence of prolate and oblate configurations for the ground state, just a triaxial state.

Triaxial calculations ¹²⁶Xe in a reduced configuration space (seven shells)

T.R.Rodriguez and J.L. Egido, Journal of Physics: Conference Series (2011)

✓ TRIAXIAL calculations

 \checkmark One single minimum in $\gamma {=} 30^\circ$ and saddle points in the axial configurations

 \checkmark PES very soft in the γ degree of freedom

✓ After GCM, there is not coexistence of prolate and oblate configurations for the ground state, just a triaxial state.

Triaxial calculations ¹²⁶Xe in a reduced configuration space (seven shells)

T.R.Rodriguez and J.L. Egido, Journal of Physics: Conference Series (2011)

✓ TRIAXIAL calculations

 \checkmark One single minimum in $\gamma {=} 30^\circ$ and saddle points in the axial configurations

 \checkmark PES very soft in the γ degree of freedom

✓ After GCM, there is not coexistence of prolate and oblate configurations for the ground state, just a triaxial state.

Triaxial calculations ¹²⁶Xe

\checkmark TRIAXIAL calculations

 \checkmark Triaxial calculations are able to describe qualitatively the experimental data

 \checkmark Branching ratios for the B(E2) nicely reproduced.

$I_i \to I_f$	Exp.	Theory
$\begin{array}{c} 2_2^+ \to 2_1^+ \\ 2_2^+ \to 0_1^+ \end{array}$	100. 1.5 ± 0.4	100. 0.001
$\begin{array}{c} 3^+_1 \to 4^+_1 \\ 3^+_1 \to 2^+_2 \\ 3^+_1 \to 2^+_1 \\ 3^+_1 \to 2^+_1 \end{array}$	$35.^{+10}_{-34}$ 100. $2.0^{+0.6}_{-1.7}$	40.48 100. 0.000
$\begin{array}{c} 4^+_2 \to 4^+_1 \\ 4^+_2 \to 2^+_2 \\ 4^+_2 \to 2^+_1 \end{array}$	76. ± 22 100. 0.4 ± 0.1	80.6 100. 0.007
$\begin{array}{c} 5^+_1 \to 6^+_1 \\ 5^+_1 \to 4^+_2 \\ 5^+_1 \to 3^+_1 \\ 5^+_1 \to 4^+_1 \end{array}$	75. ± 23 76. ± 21 100. 2.9 ± 0.8	59.6 90.6 100. 0.02
$\begin{array}{c} 6^+_2 \to 6^+_1 \\ 6^+_2 \to 4^+_2 \\ 6^+_2 \to 4^+_1 \end{array}$	$\begin{array}{r} 34. \begin{array}{c} ^{+15}_{-23} \\ 100. \\ 0.49 \ \pm 0.15 \end{array}$	$27.1 \\ 100. \\ 0.003$
$7^+_1 \to 6^+_2 \ 7^+_1 \to 5^+_1$	40. ±26 100.	45.11 100.

Triaxial calculations ¹²⁶Xe

✓ TRIAXIAL calculations

 \checkmark Triaxial calculations are able to describe qualitatively the experimental data

 \checkmark Branching ratios for the B(E2) nicely reproduced.

	Fwn	Theory
$ I_i \to I_f $	Exp.	Theory
$\begin{array}{c} 2_2^+ \rightarrow 2_1^+ \\ 2_2^+ \rightarrow 0_1^+ \end{array}$	100. 1.5 ± 0.4	100. 0.001
$\begin{array}{c} 3^+_1 \to 4^+_1 \\ 3^+_1 \to 2^+_2 \\ 3^+_1 \to 2^+_1 \end{array}$	$35.^{+10}_{-34}$ 100. $2.0^{+0.6}_{-1.7}$	40.48 100. 0.000
$\begin{array}{c} 4^+_2 \to 4^+_1 \\ 4^+_2 \to 2^+_2 \\ 4^+_2 \to 2^+_1 \end{array}$	76. ± 22 100. 0.4 ± 0.1	80.6 100. 0.007
$\begin{array}{c} 5^+_1 \to 6^+_1 \\ 5^+_1 \to 4^+_2 \\ 5^+_1 \to 3^+_1 \\ 5^+_1 \to 4^+_1 \end{array}$	75. ± 23 76. ± 21 100. 2.9 ± 0.8	59.6 90.6 100. 0.02
$\begin{array}{c} 6^+_2 \to 6^+_1 \\ 6^+_2 \to 4^+_2 \\ 6^+_2 \to 4^+_1 \end{array}$	$\begin{array}{r} 34. \begin{array}{c} ^{+15}_{-23} \\ 100. \\ 0.49 \pm 0.15 \end{array}$	27.1 100. 0.003
$7^+_1 \to 6^+_2 \ 7^+_1 \to 5^+_1$	40. ±26 100.	45.11 100.

Triaxial calculations ¹²⁶Xe

\checkmark TRIAXIAL calculations

 \checkmark Triaxial calculations are able to describe qualitatively the experimental data

 \checkmark Branching ratios for the B(E2) nicely reproduced.

$I_i \to I_f$	Exp.	Theory
$\begin{array}{c} 2_2^+ \to 2_1^+ \\ 2_2^+ \to 0_1^+ \end{array}$	100. 1.5 ± 0.4	100. 0.001
$\begin{array}{c} 3^+_1 \to 4^+_1 \\ 3^+_1 \to 2^+_2 \\ 3^+_1 \to 2^+_1 \\ 3^+_1 \to 2^+_1 \end{array}$	$35.^{+10}_{-34}$ 100. $2.0^{+0.6}_{-1.7}$	40.48 100. 0.000
$\begin{array}{c} 4^+_2 \to 4^+_1 \\ 4^+_2 \to 2^+_2 \\ 4^+_2 \to 2^+_1 \end{array}$	76. ± 22 100. 0.4 ± 0.1	80.6 100. 0.007
$\begin{array}{c} 5^+_1 \to 6^+_1 \\ 5^+_1 \to 4^+_2 \\ 5^+_1 \to 3^+_1 \\ 5^+_1 \to 4^+_1 \end{array}$	75. ± 23 76. ± 21 100. 2.9 ± 0.8	59.6 90.6 100. 0.02
$\begin{array}{c} 6^+_2 \to 6^+_1 \\ 6^+_2 \to 4^+_2 \\ 6^+_2 \to 4^+_1 \end{array}$	$\begin{array}{r} 34. \begin{array}{c} ^{+15}_{-23} \\ 100. \\ 0.49 \ \pm 0.15 \end{array}$	27.1 100. 0.003
$7^+_1 \to 6^+_2 \ 7^+_1 \to 5^+_1$	40. ±26 100.	45.11 100.

Interplay of fluctuations in deformation and pairing in the GCM framework

How to constraint pairing degrees of freedom ? In the case of space deformation we use (β,γ)

For a pure monopole pairing force, one has state independent gap and the obvious choice is the pairing gap Δ

Which is the simplest choice for the Gogny force? We can have a hint from the monopole pairing case, in this case (Ring-Schuck)

$$\langle (\Delta \hat{N})^2 \rangle = 4 \sum_{k>0} u_k^2 v_k^2 = \Delta^2 \sum_{k>0} \frac{1}{E_k^2} \propto \Delta^2 \propto E_{PAIRING}$$

We will use as a constraint with Gogny force the quantity

$$\delta = \langle (\Delta \hat{N})^2 \rangle^{1/2} \propto (E_{PAIRING})^{1/2} (?)$$

Variational Equations (I)

We proceed in two steps. In the first one we determine the intrinsic wave functions by the minimalization principle

 $\delta E'^{N}[\phi(q,\delta)] = 0,$

the constrained energy being given by

$$E'^{N} = \frac{\langle \Phi | \hat{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle} - \lambda_{q} \langle \phi | \hat{Q}_{20} | \phi \rangle - \lambda_{\delta} \langle \phi | (\Delta \hat{N})^{2} | \phi \rangle^{1/2},$$

with

$$|\Phi\rangle = P^N P^Z |\phi\rangle \text{ (VAP) or } |\Phi\rangle = |\phi\rangle \text{ and } |\phi\rangle = |HFB\rangle$$

and the Lagrange multipliers determined by the conditions:

$$\langle \phi | \hat{Q}_{20} | \phi \rangle = q, \qquad \langle \phi | (\Delta \hat{N})^2 | \phi \rangle^{1/2} = \delta.$$

Variational Equations (II)

In the second step we perform the configuration mixing calculations

$$|\Psi^{N,I,\sigma}\rangle = \int f^{N,I,\sigma}(q,\delta) \ \hat{P}^I \hat{P}^N \hat{P}^Z \ |\phi(q,\delta)\rangle dq d\delta.$$

The mixing coefficients being determined by the Hill-Wheeler equation

$$\int \left(\mathcal{H}^{N,Z,I}(q\delta,q'\delta') - E^{N,Z,I,\sigma}\mathcal{N}^{N,Z,I}(q\delta,q'\delta')\right) f^{N,Z,I,\sigma}(q'\delta')dq'd\delta' = 0,$$

Pairing energies vs. particle # fluctuations

We have seen that $\delta = \langle (\Delta N)^2 \rangle^{1/2} \propto \Delta \propto (-E_{PAIRING})^{1/2}$

Contour curves of the square root of the pairing energies in the plane (q_{20}, δ) with wave functions $P^{I=0}P^Z P^N |\Phi\rangle_{VAP}$

One dimensional calculations for ⁵⁴Cr

Two dimensional calculations for ⁵⁴Cr

Potential Energy Surfaces for ⁵⁴Cr in 2D

martes 20 de septiembre de 2011

Wave functions in various approaches

Pairing energies of the lowest 0⁺ states

		0_{1}^{+}	0^{+}_{2}	0^+_3
HFB+PNAMP (1D)	$\mathrm{E}_P(Z,N)$	-2.183, -2.227	-1.994, -2.639	-2.555, -3.339
HFB+PNAMP(2D)	$\mathrm{E}_P(Z,N)$	-3.604, -5.009	-2.484, -2.837	-2.884, -5.709
HFB+AMP(1D)	$\mathrm{E}_P(Z,N)$	-1.274, -1.977	-1.751, -1.686	-0.151, -3.165
HFB+AMP(2D)	$\mathrm{E}_P(Z,N))$	-1.723, -2.989	-3.321, -4.073	-2.881, -5.466
VAP+PNAMP(1D)	$\mathrm{E}_P(Z,N)$	-4.756, -5.396	-4.848, -4.871	-4.404, -5.509
VAP+PNAMP(2D)	$\mathrm{E}_P(Z,N)$	-4.888, -5.613	-4.144, -3.942	-4.787, -6.939

Energy convergence of the ground state

Approach

Energy (MeV)

Energy (MeV)

HFB PN_VAP +AMP (I=0) +beta_fluc +pair_fluc -470.097 -473.066 (-2.97) -475.805 (-2.74) -476.636 (-0.83) -476.865 (-0.23)

-448.234 -450.534 (-2.30) -453.180 (-2.65) -454.136 (-0.96) -454.275 (-0.14)

Conclusions and outlook

- Symmetry Conserving Configuration Mixing calculations provide a general and, at the same time, detailed description of atomic nuclei.
- Pairing fluctuations play a fundamental role in the description of excited states.
- The small collectivity of the pairing correlations makes necessary the PN-VAP approach for the configuration mixing calculations.
- At least for the nuclei considered in this work the pairing vibrations are strongly damped by the deformation degree of freedom.
- The ground state energy seems to have converged with the included terms (the GCM contributions for additional degrees is negligible).
- The breaking of the time reversal symmetry as well as two-quasiparticle admixtures will improve the quality of the calculations.

A fine tuning of the Gogny interaction for SCCM calculations would be desirable