Clustering and Correlations in 12C and Neutron Matter

S. Gandolfi, A. Gezerlis, S. C. Pieper, R. B. Wiringa
S. Reddy, K. E. Schmidt, G. Shen, S. Zhang, J. C.

Clustering in 12C 0+ states: ground- and Hoyle states

Homogeneous Neutron Matter:
- Cold Atoms and Low-Density Neutron Matter
- Higher-Density Matter and Neutron Stars

Response:
- Spin Response and Neutrino Emissivity

Inhomogeneous Matter (drops):
- Neutrons Confined in External Fields
VMC: Variational Monte Carlo
 assumed form for wave function
 Monte Carlo for integration

GFMC: Green's function Monte Carlo
 sample imaginary-time path integral
 explicit spin-isospin sums

AFDMC: Auxiliary-Field Diffusion (Green’s fn)
 Monte Carlo
 sample space and spins

AFMC: lattice calculations using auxiliary fields
^{12}C ground state

$$\Psi_0 = \exp[-H\tau] \Psi_T$$

The 'Jastrow' part of the trial wave function is a major part of the entire calculation.

There are 5 LS basis $J=0+$ basis states in the 0p shell can be constructed by operators on $(p^{3/2})^8$ state.

Can also make an explicitly triple-alpha state (1 in 0s and 2 in 0p shells) with Jastrow correlations

This basis of 6 sates works well for the ground state.
Asynchronous Dynamic Load Balancing
Pieper and Lusk, SCIDAC Review

Efficiency in %

Number of 4-core nodes

12C ADLB+GFMC

Efficiency = Application_CPU_time/Total_wall_time

Oct 2009
Jun 2009
Feb 2009
131,072 cores!
Carbon 12 ground state
computed from: \(\psi_0 = \exp \left[-H \tau \right] \psi_T \)

Trial state should incorporate flexible long-distance physics

\(\psi_T \) has 5 simplest shell-model states
+ alpha-particle `cluster' state

Good description of ground state energy/density
Trial state for 2nd 0+ (Hoyle) state
Calculation by S. Pieper (ANL)

states in G.S. trial state +
 alphas in 0s, 0p, 1s-0d shell
 also try a pair in 1s-0d shell
 total of 11 states to be diagonalized

Initial diagonalization for ground-state Ψ_T (same results)
Compute GFMC g.s. overlaps with these states,
diagonalize overlaps (10 states) to get 2nd 0+

PRELIMINARY
RMS radii / Charge Density

![Graphs showing RMS radii and charge density for different states of 12C.](image-url)
Low-Density (dilute) near free Fermions to near Unitarity range of the interaction $< \text{interparticle spacing}$

Analytically known at extremely low density E / E_F rapidly decreases to $\sim 1/2$ with increasing $k_F a$

Higher density EOS important for neutron star mass/radius
$k_F \approx 0.3$

A. Gezerlis, J. C., 2008, 2010

[Graph showing E/E_{eq} vs $k_F a$ with data points for Neutron Matter and Cold Atoms, and a note on QMC unitarity]
Improved Lattice Methods
and Unitary Gas

$E/E(\text{FG}) = 0.372(5)$
no fixed-node error

At finite (small) effective range:

$$\frac{E}{E_{\text{FG}}} = \xi + S k_F r_e$$

ξ and S are universal parameters

Can measure neutron matter EOS (including effective range corrections) in cold atoms
Unitary Fermi Gas (lattice)

Up to 27^3 lattice, 66 particles

Universality of effective range correction

Lattice method (points) compared to continuum (DMC)

\[S = 0.11(0.03) \]
Pairing Gap at low density
Summary of Gap calculations
Low-moderate density EOS
s-wave pairing gap closes
Neutrino Emissivity

Response of neutron matter to spin excitations determines emissivity:

\[S(k, \omega) = \langle 0 | \sum_i \exp[i k \cdot r_i] \sigma_i \cdot \sum_j \exp[i k \cdot r_j] \sigma_j | 0 \rangle \]

At k=0 no response (or emissivity) without tensor and spin-orbit correlations

\[Q = \frac{C_A^2 G_F^2 n}{20 \pi^3} \int_0^{\infty} d\omega \, \omega \, e^{-\omega/T} S_\sigma(\omega) \]
`Short-range' correlations

\[S_0(q) \]

\[n=0.16 \text{ fm}^{-3} \]

\[q [\text{fm}^{-1}] \]

\[r [\text{fm}] \]
Use Sum Rules to constrain the response:

\[
S_{\sigma}^{-1} = \frac{\chi_\sigma}{2n} = \frac{\chi_\sigma^F}{2n(1 + G_0)}
\]

\[
S_{\sigma}^{0} = 1 + \lim_{q \to 0} \frac{4}{3N} \sum_{i \neq j}^{N} \langle 0 | e^{-i \mathbf{q} \cdot (\mathbf{r}_i - \mathbf{r}_j)} \sigma_i \cdot \sigma_j | 0 \rangle
\]

\[
S_{\sigma}^{+1} = -\frac{4}{3N} \lim_{q \to 0} \langle 0 | [H_N, s(\mathbf{q}) \cdot s(-\mathbf{q})] | 0 \rangle
\]

Static and energy-weighted sum rules from ground-state expectations
Inverse energy-weighted from spin susceptibility

Low-Energy shape constrained by Q.P. model
High-Energy tail constrained by 2-body physics
Response compared to previous calculations
saturation density
Density Dependence

![Graph showing density dependence with curves labeled 0.12, 0.16, and 0.20.](image)
Emissivity vs. Temperature:

Emissivity actually increased compared to previous results.
Inhomogeneous Matter
`Neutron Drops'

N = 6 to 50 Neutrons
Harmonic Oscillator and Wood-Saxon external wells

Explore very large isospin limit of the density functional.
Examine gradient, spin-orbit, and pairing terms at
Low to Moderate densities

UNEDF SCIDAC project
Harmonic Oscillator External Potential

`Traditional` Skyrme models overbind neutron drops

Gandolfi, Pieper, JC, PRL 2011
Closed shells determined by EOS + gradient terms

10 MeV

$E / \omega N^{4/3}$

1p or 1h: spin-orbit

closed-shell: gradient term

mid-shell: spin-orbit and pairing
Repulsive gradient terms required to fit neutron drops also smaller spin-orbit, pairing interactions
UNEDF0 functional

Neutrons in HO potential

Marcus Kortelainen, Aizu 2010 workshop
Interaction Dependence

\[\frac{E}{\hbar\Omega N^{4/3}} \]

- AV8' + UIX
- AV8' + IL7
- AV8'
- JISP16
- JISP16, upperbound \(N_{\text{max}} = 4 \)

Pairing Gaps in Neutron Drops

J. Vary, P. Maris, S. Pieper, S. Gandolfi, J.C.
Neutron Matter at Higher Density Determines Neutron Star Mass/Radius

$k_F \sim 1.7 \text{ fm}^{-1}$ at nuclear matter density

Steiner, Lattimer and Brown, 2010
Approach

Nucleons-only model w/ reasonable resolution to treat systems up to 2-3 x saturation density

AFDMC can treat neutrons w/ 2 and 3-body forces includes superfluid pairing, short-range correlations,... more accurate and more flexible than FHNC

Try to characterize uncertainty due to unknown interaction terms: vary strength and range of short-range TNI
Interaction Model (TNI)

Longest Range Part: \(2\pi \text{TNI}\)

\[
V_{2\pi} = \sum_{\text{cyc}} T_{\pi}(r_{12})T_{\pi}(r_{23}) \{ S_{12}, S_{23} \} + Y_{\pi}(r_{12})Y_{\pi}(r_{23}) \{ \sigma_1 \cdot \sigma_2, \sigma_2 \cdot \sigma_3 \}
\]

(in neutron matter)

+ s-wave \(2\pi \text{TNI}\)

Add \(3\pi \text{TNI}\) terms from Illinois models

+ shorter range terms
TNI quite small (~ 4 MeV) at saturation density
moderate at 2x saturation density (< 1/2 E_{FG})
Very small contribution from 2π TNI
Fix (a)symmetry energy or neutron matter energy at saturation density
Causality: $R > 2.9 (\text{GM}/c^2)$

$\rho_{\text{central}} = 2 \rho_0$

$\rho_{\text{central}} = 3 \rho_0$

$\rho_{\text{central}} = 4 \rho_0$

$\rho_{\text{central}} = 5 \rho_0$

$E_{\text{sym}} = 30.5 \text{ MeV (NN)}$
Strong Correlation between Symmetry Energy and its Density Dependence

Tsang, et al 2009
Conclusions:

Realistic description of homogeneous and inhomogeneous neutron matter achievable

Being built into theories of atomic nuclei, neutron star crust, etc.

Future:

Superfluid protons in neutron-star matter

Nuclear EW response (matter, nuclei)