Description of many-body scattering states
using complex scaling method
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Recent developments IN Rl beam experiments
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o Recent developments in Rl beam experiments provide us with the exciting
opportunities to investigate the exotic structure in neutron-rich nuclei, such
as:

o Neutron halo structures,
o Molecular and Atomic orbitals,
> Violation of magic numbers, and etc.
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Two-neutron halo structure
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o |n particular, the two-neutron halo structure is one of the interesting topics.

° |n the two-neutron halo nuclei, two halo neutrons are weakly bound by the
core nucleus and spread out beyond the core.

o |In He and ''Li, the exotic n-n correlation, the so-called “dineutron”, has
been suggested from the calculation using the core+n+n three-body model.

Yu.Ts. Oganessian, et al. PRL82(1999), 4996 OE 3 O
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Two-neutron halo structure
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o Experimentally, two-neutron halo structure has been investigated by using
the Coulomb breakup reactions.

o The characteristic low-lying enhancement has been observed in the
Coulomb breakup cross sections.

o This enhancement is responsible to the weakly-bound halo neutrons?

SHe breakup: T. Aumann et al., PRC 59, 1252 (1999). Li breakup: T. Nakamura et al., PRL 96, 252502 (2006).
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To Investigate the two-neutron ha

lo nuclel
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o Two-neutron halo nuclei are weakly-bound systems, and hence, they are

broken up to the core+n+n three-body scattering states.

o To investigate the structure of the two-neutron halo nuclei, it is necessary
to describe the scattering states of the core+n+n system and to
understand the mechanism of the three-body breakups.

direct breakup from the ground state to non-interacting continua
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decay via intermediate states or decay governed by FSI

high-Z target

7




Theoretical attempt to describe the breakup of 2n halo
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o There are several theoretical works to describe the three-body scattering
states and to investigate the breakup mechanism of two-neutron halos.

o For examples, Hyperspherical Harmonics, Faddeev method, and etc.

In this talk, | would like
° to introduce the method to describe the many-body scattering
state using the complex scaling method, and then,

o to show its applications to the scattering problems for A=6
systems.
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Complex scaling method
and
Complex-scaled solutions
of the Lippmann-Schwinger equation



Complex scallng method (CSM)
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o CSM is a powerful tool to investigate the many-body resonances on the same
footing as the bound-state case.

o |[n CSM, the relative coordinates and momenta are transformed as follows.
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o Then, we obtain the complex-scaled Schroedinger equation as

AN

Hx(r) = Ex(r) — H°X(r) = E°X"(r)
o Here, the complex-scaled wave function and Hamiltonian are given as

x’(x) = U(0)x(r) = e2“x(ve’)

H’ =U(0)HU (9



These poles are obtained as
discretized resonances!!




The obtalned spectra in CSM
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o |n CSM, the energy eigenvalues are obtained as Complex numbers, and their
imaginary parts impose the outgoing boundary conditions.
o The resonance has the energy of Er - [ /2.
o The continuum states are classified into several families corresponding to
the decaying channels.

O
03 °2¥ (1.08,1.27)
é il 5He(3/2)+n two-body
= 15 :
E'.EJ/ ” o° He(1/2)+n two- body
- o +n+n three- body
-2.5
-3

0O 05 1 15 2 25 3
Re(E) [MeV]
ex) obtained spectra of 2+ states of °He

P—



Descrlptlon of scatterlng states with CSI\/I
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o The behavior of the energy eigenvalues in CSM mdlcates that CSI\/I IS useful
to describe the many-body scattering states.

o We develop the method to describe the many-body scattering states by
combining CSM with the Lippmann-Schwinger equation.

o We start with the formal solutions of the Lippmann-Schwinger equation.
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o To take into account the outgoing boundary conditions in the Green’s
function, we employ the complex-scaled Green’s function, which is given as
1

lim =U"1(9)
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Description of scattering states Wlth CSI\/I
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o Here, we expand the complex-scaled Green’s function with the complete set

constructed with the solved eigenstates and eigenvalues of H?.
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We solve the Schroedinger equation of 05 |
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H® by using the few-body technique in
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Here, we employ the orthogonality Re(E) [MeV]

condition model and use the Gaussian
basis functions.

Outgoing boundary conditions are taken
into account in the imaginary parts of
energy eigenvalues.




Descrlptlon of scatterlng states with CSM
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o Combining the Lippmann-Schwinger equation with the complex-scaled
Green’s function, we can describe the scattering states as follows.
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o We refer this solution to the complex-scaled solutions of the Lippmann-
Schwinger equation (CSLS).

o The advantage in CSLS is that we can solve many-body scattering
problems

o |n similar manner to the bound-state cases
o without explicit enforcement of the boundary conditions



5 % ‘I ! i’iﬁ - ¥ o o DY, L - 3 .. L Nt ok & ¢ Yheu - v : : ”
mm ‘ ' ”'l. q‘ mv;ﬁ%" “\ '\‘-.”.. * nw--" - ﬂ‘.-.““.,{&“;' "\ﬂ S A ’vaﬁom‘”’

Applications of CSLS
to the scattering problems for A=6 systems

l. a+d elastic scattering
2. Coulomb breakup reaction of °He



1. a+d elastic scattering
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o Setup
o Hamiltonian
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H= th‘ = Fom ¥ Z Van(ri) + VN + Vann

=1 =i
where V,n: KKNN potential, Vyn: AVS’

o Basis functions to construct the complete set
o (Gaussian basis functions, whose ranges are taken up to 20 fm

o The obtained properties of the ground state
o Matter radius: 2.33 fm exp.) 2.44 = 0.07 fm
o Charge radius: 2.47 fm exp.) 2.56 £ 0.05 fm

A. Dobrovolsky et al., NPA766 (20006), 1.
G.C. Li et al., NPA81 (1971), 583.



Elastic phase shifts of a+d scattering
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The obtained elastic phase shifts for D-wave scattering of the a+d system in
comparison with the observed data.

Our calculated results reproduce the observed trend in the phase shifts.
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2. Coulomb breakup reaction of °He
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o Setup
o Hamiltonian
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[:I - th - Tc.m. + Z VaN(ri) + VNN + VaNN
=1 i=1

where V,n: KKNN potential, Vxyn: Minnesota force

o Basis functions to construct the complete set
o (Gaussian basis functions, whose ranges are taken up to 20 fm

o The obtained properties of the ground state
o Matter radius: 2.46 fm exp.) 2.48 = 0.03 fm
o Charge radius: 2.04 fm exp.) 2.068(11) fm



Coulomb breakup cross section of 5He
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o The obtained Coulomb breakup cross section of ®He in comparison with the
experimental data.
> The low-lying enhancement in the cross section is well reproduced.

o CSLS is also capable of investigating the three-body scattering states of
halo nuclei.
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Invariant mass spectra for binary subsystems
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o The invariant mass spectra for a-n and n-n subsystems.

o The observed trend in the invariant mass spectra are well reproduced.

do/dE,_, [arb. units]

CSLS enables us to investigate the structures not only of the total system
but also of the binary subsystems.
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Summary
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o Complex scaling method is a powerful tool to investigate not only the
resonances but also the scattering states of nuclear many-body systems.

o We develop the method to describe the many-body scattering states,
which is referred to the complex-scaled solutions of the Lippmann-
Schwinger equation (CSLS).

o CSLS enables us to solve the three-body scattering problems
o n similar manner to the bound-state cases
o without explicit enforcement of boundary conditions

o CSLS reasonably reproduces the scattering properties of A=6 systems,
such as:

o elastic phase shifts of a+d scattering
o Coulomb breakup cross section of ®He
o |nvariant mass spectra for binary subsystems in He



