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Recent developments in RI beam experiments

Recent developments in RI beam experiments provide us with the exciting 
opportunities to investigate the exotic structure in neutron-rich nuclei, such 
as:

Neutron halo structures,
Molecular and Atomic orbitals,
Violation of magic numbers, and etc.

π-orbital

σ-orbital

Halo structure
Molecular orbital



Two-neutron halo structure

In particular, the two-neutron halo structure is one of the interesting topics.
In the two-neutron halo nuclei, two halo neutrons are weakly bound by the 
core nucleus and spread out beyond the core.
In 6He and 11Li, the exotic n-n correlation, the so-called “dineutron”, has 
been suggested from the calculation using the core+n+n three-body model.

Yu.Ts. Oganessian, et al. PRL82(1999), 4996 

di-neutron cigar-like



Two-neutron halo structure

Experimentally, two-neutron halo structure has been investigated by using 
the Coulomb breakup reactions.

The characteristic low-lying enhancement has been observed in the 
Coulomb breakup cross sections.
This enhancement is responsible to the weakly-bound halo neutrons?

6He breakup: T. Aumann et al., PRC 59, 1252 (1999). 11Li breakup: T. Nakamura et al., PRL 96, 252502 (2006).



To investigate the two-neutron halo nuclei

Two-neutron halo nuclei are weakly-bound systems, and hence, they are 
broken up to the core+n+n three-body scattering states.

To investigate the structure of the two-neutron halo nuclei, it is necessary 
to describe the scattering states of the core+n+n system and to 
understand the mechanism of the three-body breakups.

high-Z target

γ

direct breakup from the ground state to non-interacting continua

decay via intermediate states or decay governed by FSI

ground state decaying states



Theoretical attempt to describe the breakup of 2n halo

There are several theoretical works to describe the three-body scattering 
states and to investigate the breakup mechanism of two-neutron halos.

For examples, Hyperspherical Harmonics, Faddeev method, and etc.

In this talk, I would like
to introduce the method to describe the many-body scattering 
state using the complex scaling method, and then,
to show its applications to the scattering problems for A=6 
systems.



Complex scaling method
and

Complex-scaled solutions
of the Lippmann-Schwinger equation



Complex scaling method (CSM)

CSM is a powerful tool to investigate the many-body resonances on the same 
footing as the bound-state case.

In CSM, the relative coordinates and momenta are transformed as follows.

Then, we obtain the complex-scaled Schroedinger equation as

Here, the complex-scaled wave function and Hamiltonian are given as



Complex scaling method (CSM)

Under the transformation in CSM, the resonance poles are obtained as the 
discretized states as well as the bound states.

By rotating the contour of the integral pass in the momentum plane, we 
resonance poles in the S-matrix are found as the residues.

Im(k)

Re(k)

bound states

resonancesanti-resonances

Im(k)

Re(k)

bound states

resonancesanti-resonances

These poles are obtained as 
discretized resonances!!



The obtained spectra in CSM

In CSM, the energy eigenvalues are obtained as complex numbers, and their 
imaginary parts impose the outgoing boundary conditions.

The resonance has the energy of Er - Γ/2.
The continuum states are classified into several families corresponding to 
the decaying channels.
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Description of scattering states with CSM

The behavior of the energy eigenvalues in CSM indicates that CSM is useful 
to describe the many-body scattering states.
We develop the method to describe the many-body scattering states by 
combining CSM with the Lippmann-Schwinger equation.

We start with the formal solutions of the Lippmann-Schwinger equation.

To take into account the outgoing boundary conditions in the Green’s 
function, we employ the complex-scaled Green’s function, which is given as



Description of scattering states with CSM

Here, we expand the complex-scaled Green’s function with the complete set 
constructed with the solved eigenstates and eigenvalues of Hθ.
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Outgoing boundary conditions are taken 
into account in the imaginary parts of 
energy eigenvalues.

We solve the Schroedinger equation of 
Hθ by using the few-body technique in 
similar manner to the bound-state case.

Here, we employ the orthogonality 
condition model and use the Gaussian 
basis functions.



Description of scattering states with CSM

Combining the Lippmann-Schwinger equation with the complex-scaled 
Green’s function, we can describe the scattering states as follows.

We refer this solution to the complex-scaled solutions of the Lippmann-
Schwinger equation (CSLS).

The advantage in CSLS is that we can solve many-body scattering 
problems

in similar manner to the bound-state cases
without explicit enforcement of the boundary conditions



Applications of CSLS
to the scattering problems for A=6 systems

1. α+d elastic scattering
2. Coulomb breakup reaction of 6He



1. α+d elastic scattering

Setup
Hamiltonian

Basis functions to construct the complete set
Gaussian basis functions, whose ranges are taken up to 20 fm

The obtained properties of the ground state
Matter radius: 2.33 fm      exp.) 2.44 ± 0.07 fm
Charge radius: 2.47 fm      exp.) 2.56 ± 0.05 fm

A. Dobrovolsky et al., NPA766 (2006), 1.
G.C. Li et al., NPA81 (1971), 583.



Elastic phase shifts of α+d scattering

The obtained elastic phase shifts for D-wave scattering of the α+d system in 
comparison with the observed data.

Our calculated results reproduce the observed trend in the phase shifts.

R.G.H. Robertson et al., PRL47(1981), 1867.
J. Kiener et al., PRC44(1991), 2195.
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2. Coulomb breakup reaction of 6He

Setup
Hamiltonian

Basis functions to construct the complete set
Gaussian basis functions, whose ranges are taken up to 20 fm

The obtained properties of the ground state
Matter radius: 2.46 fm      exp.) 2.48 ± 0.03 fm
Charge radius: 2.04 fm      exp.) 2.068(11) fm



Coulomb breakup cross section of 6He

The obtained Coulomb breakup cross section of 6He in comparison with the 
experimental data.

The low-lying enhancement in the cross section is well reproduced.
CSLS is also capable of investigating the three-body scattering states of 
halo nuclei.
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Invariant mass spectra for binary subsystems

The invariant mass spectra for α-n and n-n subsystems.
The observed trend in the invariant mass spectra are well reproduced.
CSLS enables us to investigate the structures not only of the total system 
but also of the binary subsystems.
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Summary

Complex scaling method is a powerful tool to investigate not only the 
resonances but also the scattering states of nuclear many-body systems.

We develop the method to describe the many-body scattering states, 
which is referred to the complex-scaled solutions of the Lippmann-
Schwinger equation (CSLS).
CSLS enables us to solve the three-body scattering problems

 in similar manner to the bound-state cases
without explicit enforcement of boundary conditions

CSLS reasonably reproduces the scattering properties of A=6 systems, 
such as:

elastic phase shifts of α+d scattering
Coulomb breakup cross section of 6He
Invariant mass spectra for binary subsystems in 6He


