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Japanese “K computer” got rank 1 in the world. 
The construction will be completed at Nov. 2012. 

K computer, Japan 

What is the application program to run on it ? SPARC64 VIIIfx   548352 cores 



In view of truncation approaches to full LSSM space 

• t-particle t-hole truncation + Lanczos method 
            spherical Slater determinant 
• Generator coordinate method 
             (J-projected) deformed Slater determinant or quasi-particle vacua 
• Monte Carlo Shell Model 
             J-projected deformed Slater determinants 
• VAMPIR 
             J-projected quasi-particle vacua 
• Importance Truncated Shell Model 
             spherical Slater determinant 
• Projected CI 
             J-projected deformed Slater determinants 
• Variational Monte Carlo method, DMRG, and so on ... 

They are variational approaches, which always provide us with upper limit of exact value.  
It is difficult to know how far it is from the exact one. 

Energy variance extrapolation 

Many efforts have been paid to develop truncation scheme 
 consisting of form of basis and way of selection.  



Monte-Carlo Shell Model 

Increase the MCSM basis, or number of defomed Slater det. till energy converges 

φσφ σβ )0()()( ⋅∏= ⋅∆e h

)(ˆ σh one-body Hamiltonian 
σ... auxiliary field 

       random numbers 

       generated stochastically 

MCSM basis, deformed Slater det.  

A tool to go beyond  the conventional diagonalization method 

T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu and Y. Utsuno 
Prog. Part. Nucl. Phys. 47, 319 (2001) 

Advantageous for parallel computation, bases  and mesh points 

The shell-model wave function is described  
by a linear combination of parity, angular-momentum  
projected Slater determinants 
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Angular-momentum projection   ... 3-dimension integral (discretized) 
Small disk I/O  



Developments of the Monte Carlo shell Model towards “K computer” 

Algorithm tuning 
for computation 

Precise estimation of energy eigenvalue 
by variance extrapolation PC cluster 

100CPU parallel 

T. Otsuka, M. Honma, T. Mizusaki, N. 
Shimizu, and Y. Utsuno, Prog. Part. Nucl. 
Phys. 47, 319 (2001). 

Parallel efficiency 

Y. Utsuno, N. Shimizu, T. Otsuka, and T. Abe, 
 to be submitted. 

N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, 
and M. Honma, Phys. Rev. C 82, 061305(R) (2010). 

Improvement of the MCSM 
by Conjugate Gradient method 

OpenMP+MPI hybrid parallel  

1024 cores 

8 times faster  
at maximum 

SPARC64 VIIIfx   548352 cores 



New algorithm  for evaluating Hamiltonian matrix elements in 
the MCSM 
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Matrix product is performed by DGEMM subroutine in BLAS library, which is highly tuned 
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Product of a sparse matrix and a vector is replaced by 
the product of dense matrices  

Nbunch 
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hot spot: calculation of the matrix element of two-body int. 
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Tuning by density matrix product 

Courtesy of Y. Utsuno 

The performance reaches 80% of 
the theoretical peak  at hot 
spot. 

 
SPARC64 requires large Nbunch in 

comparison to Xeon  

Nbunch controllable tuning parameter 
chunk size 

Nshell = 5 

Matrix product  e.g. 
(390 x 390)  x (390 x 2Nbunch) 
 

FX1@JAEA 



How far from the exact eigenvalue? 

• Very small difference between the MCSM and exact solution 

–  About 99% correlation energy (i.e., gain from HF) can be gained typically. 

• It is not easy to see where the energy converges. 

56Ni in pf shell, 0+
1, 109 m-scheme dimension 



Extrapolation method: 
spherical basis vs. projected deformed basis 

Number of basis states 
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exact 

e.g.  ～1011 

t=0 

t=2 

～102 

t=4 

spherical basis with particle-hole truncation 

1 

angular-momentum projected deformed basis 

Exponential convergence method 

Needs extrapolation method which works independently of the basis  
                                                                                                representation  

(e. g. MCSM) 

MCSM, PCI, VAMPIR, HMD, ITSM, ... 

Extrapolation method using energy variance 

M. Horoi, B. A. Brown, V. Zelevinsky: PRC65, 027303 

2 

? 

3 

exact 

Extrapolation method using sorted submatrices 
N. Yoshinaga and A. Arima: PRC81, 044316 (2010) 

Exponential fit causes slow convergence and big uncertainty  



“A series of  
approximation” 

What is the energy-variance extrapolation? 

Ref.  T. Mizusaki and M. Imada,  Phys. Rev. C65 064319 (2002)  

Energy variance is defined as 

...
222

0 +∆+∆+= HbHaEH extrapolate                      so that 
       becomes       , true energy. 

02 →∆H
H 0E

A series of approximated wave functions:  

02 =∆H

If the wave function is an exact  
eigenstate of the Hamiltonian,  
energy variance is exactly zero 

222 HHH −=∆

With a sequence of approximate 
energies, 

222 HHH −=∆

Demonstrated by Mizusaki in the framework of conventional shell model  
 



Obstacle of the MCSM+extrapolation: computation time for energy variance, <H2> 
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The expectation value of general four-body operator in deformed Slater determinants is 
obtained by Wick’s theorem : 
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8-fold loops, 24 terms 

6-fold loops, matrix-product form 

Separability of H2 
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2-body int. 2-fold loops, 2 terms 

4-body int. 

two independent inside loops 



Red solid line : 2nd order extrapolation for the MCSM 

Blue dashed line : 2nd order extrapolation of  
                              t-particle t-hole truncation  
                               in spherical basis  

Result of energy variance extrapolation in the 
MCSM: 56Ni in pf-shell 
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Extrapolation method in observables : 56Ni in pf-shell 

MCSM+1st order extrapolation shows good predictive power in various 
physical quantities in addition to energy eigenvalues 

solid symbol : MCSM 

red line: 1st order extrapolation of the MCSM  

open symbol : exact 

occupation number of 0f7/2 orbit 

Q-moment 

B(E2;0+->2+) 



MCSM + energy-variance extrapolation 64Ge with 40Ca core  
(24 valence particles in pf+g9/2 space,  corresponding the diagonalization of  

1.7 x1014 m-scheme dimension) 

N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka,  
T. Abe, and M. Honma, Phys. Rev. C 82, 061305(R) (2010). 

diagonalization with  
t-particle t-hole truncation  

Monte Carlo Shell Model 
      + extrapolation 

exact: unknown 

extrapolated value 
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<H
>  



For more efficient computation 

Monte-Carlo Shell Model method: Wave function of the nuclear 
shell model is described by a linear combination of angular-
momentum (and parity) projected Slater determinants 

MCSM basis, deformed Slater det.  

By using the energy variance of the approximated  
wave functions, we estimate the exact eigenvalue  
precisely. 
The computation of the energy variance  
needs a lot of computer resources, which is  
proportional to the number of bases squared. 

Efficient computation with a small number of Slater det. 

～100 bases 
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Energy minimization by Conjugate Gradient 
method  

Few Determinant Approximation  
 M. Honma, B.A.Brown, T. Mizusaki, and T. Otsuka 
 Nucl. Phys. A 704, 134c (2002) 

Hybrid Multi-Determinant 
 G. Puddu, Acta Phys. Polon. B42, 1287 (2011)  

Conjugate gradient  
taken from wikipedia 
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Evaluation of the energy variance is time consuming  
due to the four-body interaction. 

Minimize E(D) as a function of D utilizing  
Conjugate Gradient method  

VAMPIR 
 K.W. Schmid, F. Glummer, M. Kyotoku, and A. Faessler  
 Nucl. Phys. A 452,  493 (1986) 
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Step1 ：Generate basis candidate by auxiliary field technique  
              stochastically 
 
 
      and select basis which lowers the energy 

φσφ σβ )0()()( ⋅∏= ⋅∆e h

Step 2：Energy expectation value is taken  
         as a function of D, and optimize it using  
          Conjugate Gradient method  (VAP)    

Iterate these steps every basis 
 till the energy converges 



Energy minimization by Conjugate Gradient method  

Conjugate gradient 

E 

reject 

accept 

start 

E 

start 
reject 

accept 

Stochastic sampling 

Stochastic sampling 

Stochastic sampling before conjugate gradient  
to minimize the expectation value energy  

reduce the number of basis function  
roughly 30% 

64Ge in pfg9-shell, 1014dim 

Step 1 

Step 2 



Energy minimization by Conjugate Gradient method  

Conjugate gradient Stochastic sampling before conjugate gradient  
to minimize the expectation value energy  

reduce the number of basis function  
roughly 30% 

64Ge in pfg9-shell, 1014dim 

Step 1 

Step 2 

Step 1 

Step 2 



A possible problem: trapped by another  excited state  

72Ge, f5pg9, JUN45 int. 1.4x108 m-scheme dim. 

～120 basis 

The 0+
1 MCSM wave function up to 20 bases is trapped by the 0+

2 state.  

This situation is rear,  the structure of  0+
2 state is close to the projected Slater det.  

  the ground state includes much many-body correlations. 



Step 3： simultaneous optimization of many bases   
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minimization of all D(n), not sequential opt. 

72Ge, JUN45 int. 1.4x108 m-scheme dim. 

～120 basis 

sequential optimization of  
each base, 704 parameters  
resulting in 120 bases 

optimization of 24 bases, 16896 parameters 
with simultaneous variation 
many-basis correlation is included from beginning 



A possible problem: narrow region for fit  

In some cases, the range of the variance  
is too small to make stable fit 

2nd order polynomial fit causes 
large uncertainty of the extrapolation 

N,Z=50~82, P+QQ int. 
triaxial deformed Xe, Ba isotopes 



Re-ordering of the basis functions 
Ansatz: Energy-variance extrapolation method always works and the 

extrapolated value is independent of the ordering of basis functions ... 

Energy variance  
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A sequence of the approximated   
wave functions 

Re-ordering 
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to obtain another sequence and fit A fit curve can be close to linear 
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A possible problem: narrow region for fit  

Reordering of the bases  
decreases the uncertainty of  
the extrapolated value  

In some cases, the range of the variance  
is too small to make stable fit 

2nd order polynomial fit causes 
large uncertainty of the extrapolation 

fit curve is close to linear 

N,Z=50~82, P+QQ int. 
triaxial deformed Xe, Ba isotopes 



Energy-variance extrapolation for ground state energy 

exact N/A 

2x1010 dim. 

8x108 dim. 



non-yrast states 

1st  order extrapolation 
 2nd order extrapolation 

8 bases are optimized for 0+
1 

additional 8 bases for 0+
2 



Excitation energies of Xe isotopes 

symbol: exp.  
line :     theory Excitation energies Ba isotopes 



The application of the 
MCSM+extrapolation method to 
no-core shell model calculations 

T. Abe (Univ. of Tokyo), T. Otsuka (Univ. of Tokyo),  
N. Shimizu (Univ. of Tokyo), Y. Utsuno (JAEA),  

J. Vary (Iowa), P. Maris (Iowa) 



JISP16 NN interaction 

• JISP16: J-matrix Inverse Scattering Potential tuned B.E.s up to 16O with phase-
shift-equivalent unitary transformation 

 

 

    - Small matrix of the NN int. in the oscillator basis 

    - High quality description of NN potential thru. p-shell nuclei 

       -> Reproduce the phase shift, deuteron properties, & B.E.s of some light nuclei 

       -> In this sense, JISP16 is the “bare” interaction 

    - JISP16 NN int. seems to minimize 3N (many-body) int. 

 

 feasible for the large-scale computation of nuclear structure 

 References 
 
JISP16:  A. M. Shirokov, J.P. Vary, A. I. Mazur, T.A. Weber, Phys. Lett. B644, 33 (2007) 
NCFC calc of light nuclei w/ JISP16: P. Maris, J.P. Vary, A.M. Shirokov, Phys. Rev. C 79, 014308 (2009) 28 



• Definition: (Correlation Energy)  

 

Why we need to extrapolate the energies 

29 

NCSM wf w/ realistic NN int is more correlated (complicated) than SSM wf w/ effective int 

Need energy-variance extrapolation for No-Core MCSM calc 

4He (0+, 4shl) 

6He (0+, 4shl) 
6Li (1+, 4shl) 

7Li (1/2-, 4shl) 

7Li (3/2-, 4shl) 

8Be (0+, 4shl) 

10B (1+, 4shl) 

10B (3+, 4shl) 

12C (0+, 4shl) 

64Ge (pfg9) 

56Ni (pf) FCI 

CI 

Nshell=1 
Nshell=2 

Nshell=3 
Nshell=4 

Nshell=5 
. 
. 
. 

. 

. 

. 

The first basis of the MCSM 



Helium-4 & carbon-12 gs energies 

4He(0+;gs) 

12C(0+;gs) 

Nshell = 2 

Nshell = 2 

Nshell = 3 

Nshell = 3 

Nshell = 4 

Nshell = 4 

Nshell = 5 

Exact result is unknown 

w/ optimum hw 
w/o Coulomb force 
w/o spurious CoM treatmen

Nshell=1 
Nshell=2 

Nshell=3 
Nshell=4 

Nshell=5 
. 
. 
. 

. 

. 

. 



Energies of Light Nuclei 

Nshell = 4 (spsdpf) 

4He (0+) 

Nshell = 3 (spsd) 

Nshell = 2 (sp) 

6He (0+) 

6Li (1+) 

7Li (1/2-) 

7Li (3/2-) 

8Be (0+) 

10B (1+) 

10B (3+) 

12C (0+) 

31 

w/o the extrapolation method 

MCSM 
FCI 

T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno, J. P. Vary 

Performed only by MCSM 



Nshell = 4 (spsdpf) 

4He (0+) 

Nshell = 3 (spsd) 

Nshell = 2 (sp) 

6He (0+) 

6Li (1+) 

7Li (1/2-) 

7Li (3/2-) 

8Be (0+) 

10B (1+) 

10B (3+) 

12C (0+) 

32 

w/ the extrapolation method 

Energies of Light Nuclei 

MCSM 
FCI 

T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno, J. P. Vary 

Performed only by MCSM 



Nshell=5 Calculations 

• Benchmark calculation of light nuclei with Nshell=5 

 

 

 

 

 

 

 

 

 

 

 

• The extrapolated values are obtained within a few 10 keVs uncertainty. 

4He(0+;gs) 

6Li(1+;gs) 

6He(0+;gs) 

-29.893 MeV (exact) 
-29.812 MeV (extrap) 

-26.079 MeV (exact) 
-26.081 MeV (extrap) 

-29.036 MeV (exact) 
-29.036 MeV (extrap) 

~ 1 PFLOPS*hour/state ~ 3 PFLOPS*hour/state 

exact 

~ 3x105 M-scheme dim 

~ 1x108 M-scheme dim 

~ 1x108 M-scheme dim 



M-scheme dimension  

DM 

Nshell=1 
Nshell=2 

Nshell=3 
Nshell=4 

Nshell=5 

. 

. 

. 

. 

. 

. 

No-core MCSM 

16O (0+) 

12C (0+) 
10B (3+) 

4He (0+) 

34 

6He (0+), 6Li(1+) 
7Li(3/2-) 
8Be (0+) 

Current FCI limit 

Moore’s law:  
#transistors doubles every two years. (p = 2n/2) 
x 5.7 after 5 yrs 
x 32 after 10 yrs   

aim at many-particle many-hole excited state 



Summary 
• Energy-variance extrapolation works well in the 

frameworks of the MCSM, conventional Lanczos method 
with truncation, and the Variational Monte Carlo. It 
demonstrates up to 1014 dimension system. 

• Conjugate Gradient optimization method makes the MCSM 
calculation more efficiently. 

• Many basis optimization enables us to avoid the trapping 
problem of higher excited state. 

• No-core MCSM shows its feasibility in light nuclei.  

• The MCSM code is under intensive developments for 
massive parallel computation and “K computer”. 
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